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Abstract. This study explores a spatiotemporal comparative analysis of urban agglomeration, com-
paring the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China.
The vegetation–impervious surface–soil (V–I–S) model is used to quantify the ecological compo-
sition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes)
and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledge-
based methods are applied to get the V–I–S component fractions at high accuracies. The statistical
results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and
only two districts revealed increasing trends for impervious surfaces for the period from 1999 to
2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been
accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and
dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from mono-
centric to polycentric. Central Tianjin has become more centralized, while most other municipal
areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more
balanced ecological environment than Tianjin. These differences in the two areas may play an
important role in urban planning and decision-making in developing countries. © The Authors.
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1 Introduction

Nowadays, cities across the world are spreading into their surrounding landscapes, sucking food,
energy, water, and resources from the natural environment and profoundly changing global eco-
systems. Urban ecosystems are among the most dramatic manifestations of anthropological
impacts on the environment.1,2 Recent research has also shown that urban sprawl and increased
land use/land cover change in urban areas have considerable impacts on climate, hydrological,
and biogeochemical cycles at various scales.3,4 Therefore, it is important to understand clearly
the different urban land surface characteristics, their spatial and temporal dynamics, and the
corresponding responses to regional and global environment change.

The advantages of remote sensing—such as relatively low cost, large-area coverage, and
repetitive observations—and also the growing interest in urban ecosystems have promoted
the application of remote sensing in monitoring the urban environment. Researchers have devel-
oped a variety of approaches to distinguish surface cover types and numerous environmental
variables through using remote sensing data in urban areas. Ridd2 presented a concept
model to parameterize the biophysical composition of urban environments. This model, namely
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the vegetation–impervious surface–soil (V–I–S) model, may serve as a foundation for character-
izing urban/near-urban environments and has been applied in various studies. Chen5 used Landsat
TM and SPOT-P data to examine the effect of V–I–S cover types as input to hydrological models
for runoff prediction for storms. Gluch et al.6 utilized advanced thermal land applications sensor
data to determine urban heat island effects using V–I–S cover types. Rashed et al.7 employed four
spectral bands of Indian IRS-1C imagery to study the anatomy of Greater Cairo in terms of end-
member fractions (vegetation, impervious surface, soil, and shade) through linear spectral mixture
analysis. Artificial neural network algorithms,8–10 such as the multilayer perception feed-forward
network and the back-propagation network, were applied for estimating end-member fractions
within each pixel. Based on the V–I–S fractions, the classification and regression tree (CART)
algorithm has also been widely used to obtain the impervious surface end-members.11–13 More
recently, some researchers have attempted a modern machine learning method—the support vector
machine (SVM)—to map urban characteristics.14–17 Meanwhile, studies of quantitative landscape
ecology have developed landscape spatial metrics or indices to quantify the spatial contiguity,
shape, and patch distribution of classified data.

A major problem is that, at the moment, it is difficult to extract accurately urban components
based on remotely sensed data. Each image classifier has its own advantages and disadvantages.
It is difficult to get a higher accuracy by relying on one classifier. Combining the strengths of
several different methods—particularly through the synthesis of an advanced classifier and by
using knowledge obtained from auxiliary data or empirical models—would contribute to pro-
ducing a higher accuracy. In this paper, a machine learning methodology of global optimization
—the SVM algorithm—was chosen as the classifier because of its improved performance com-
pared to other approaches. This improved performance has been demonstrated in previous stud-
ies.15–17 In addition, two kinds of knowledge were used to help to extract urban components:
geospatial auxiliary data, such as urban vector data, and spectral index models, such as the modi-
fied normalized difference water index (MNDWI)18 and normalized difference bareness index
(NDBaI).19 Although the V–I–S segmentation method of land cover is superior to models or
classifications of land use for energy and moisture flux analysis of ecosystems,20 there is
still some spectral confusion because the same object can have different spectra or different
objects can have the same spectrum. In this paper, four end-members including a high-albedo
object, a low-albedo object, and easily distinguishable vegetation and soil were selected for the
classification and fraction computation. After this had been done, empirical models and geo-
spatial data were used to map this to V–I–S components.

Remotely sensed information has been widely applied in urban environment studies.
Multitemporal remote sensing data have been used to map urban areas and reveal urban spatial
and temporal changes.20–32 Research20,23–26 demonstrates that the spatial metrics can be useful
tools for monitoring a particular urban landscape by providing various measures of patch shapes
and patterns. Most studies focus on case studies in developing countries21–23,28,29 or in developed
countries.24,30 Moreover, comparison analyses between different countries are mostly based on
coarse resolution imagery.27,31 Due to difficulties in data acquisition and data processing,6 not
much research has been conducted into comparison analysis at medium resolutions. In 2011, the
Comparative Study on Global Environmental Change Using Remote Sensing Technology
project started. This program selects areas from China, Canada, Brazil, and Australia that
are sensitive to global environmental change as test sites. Comparative studies of typical global
change phenomena are performed between the northern and southern hemispheres, and also
between the eastern and western hemispheres so as to develop the methodology of global envi-
ronmental change remote sensing and to provide scientific data and decision support to deal with
global environmental change. As a preliminary study of this project, we selected two urban areas,
one in Canada and one in China, to explore the differences in urban development and the eco-
logical implications of these differences.

2 Study Area and Datasets

2.1 Study Area

The Greater Toronto and Hamilton Area (GTHA) is located at the western end of Lake Ontario in
Southern Ontario, Canada [Fig. 1(a)]. Extending from 43°17′ N to 44° 2′ N and 78°6′W to 80°5′
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W, it is the largest metropolitan area in Canada and is ranked in the top 50 most densely popu-
lated areas in the world.33 The GTHA covers the city of Toronto as well as the surrounding
regional municipalities of Durham, Halton, Peel, York, and Hamilton. The city of Tianjin is
located between 38.57°N and 40.25°N and between 116.72°E and 118.32°E, covering
∼11;760.26 km2 [Fig. 1(b)]. Tianjin is one of the four directly governed municipalities of
China and comprises the fifth largest area of urban land in China. In terms of urban population,
Tianjin is the sixth largest city in China. Since 1980, the urban population of Tianjin has grown
by 50% and has now reached 10.29 million.34

2.2 Datasets and Preprocessing

Owing to their unique features of a long-time span, low cost, and relatively high temporal and
spatial resolution, Landsat datasets were selected as our primary datasets in this study. The
Landsat ETM+ and TM data were acquired from the global land cover facility at the
University of Maryland (ftp://ftp.glcf.umd.edu/glcf/Landsat/), the U.S. Geological Survey
website (http://eros.usgs.gov), and the remote sensing data sharing platform at the Center for
Earth Observation and Digital Earth, Chinese Academy of Sciences (http://ids.ceode.ac.cn/).
Four Landsat scenes (path/row of 18/29, 18/30, 17/29, and 17/30) were downloaded to
cover the GTHA, while two scenes were downloaded (122/32 and 122/33) for Tianjin.
Three stages of Landsat imagery from 1985 to 2005 were used to investigate the spatiotemporal
dynamics of both study sites. To reduce classification uncertainty, only images that had limited
cloud cover and that fell in the period of August to September (except for one 1987 scene of
Tianjin) were selected. Detail descriptions of the datasets used are shown in Table 1. For the
GTHA, three land use and land cover (LULC) maps (for 1985, 2001, and 2005) were provided
by the Canadian Urban Land Use Survey. All Landsat scenes were processed to level 1T using
the Universal Transverse Mercator map projection (UTM, Zone 17N for GTHA, UTM, Zone
50N for Tianjin), WGS84 geodetic datum, and north-up image orientation. All images and
LULC maps were georegistered with RMS errors of <1 pixel. The LULC data were resampled
to 10 m and the Landsat data were resampled to 30 m.

3 Methodology

In this study, a machine learning methodology of global optimization, the SVM algorithm, was
chosen as the classifier because of its improved performance, as demonstrated in previous stud-
ies, compared with other approaches.15,17 Moreover, two kinds of information were used to help

Fig. 1 Location map of the study areas is (a) Greater Toronto and Hamilton Area (GTHA) and
(b) Tianjin.
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to extract urban components: geospatial auxiliary data, such as urban vector data, and spectral
index models.18–29,35 Statistical analysis of fraction images and spatial metric analysis were then
carried out in municipal districts and metropolitan areas in both study areas. The flow chart in
Fig. 2 shows the processing chain used in this study.

3.1 Support Vector Machine

The SVM originates from a nonparametric machine learning methodology that follows basic
ideas of supervised classification to map data into a high-dimensional space in order to identify
the hyperplane of each class.36–38 Due to its advanced generalization ability in targeting clas-
sification rules, it facilitates comparatively accurate computation and can carry out image clas-
sification processing quickly.39

In this paper, about 800 samples for each stage image were manually selected for each end-
member and were used for training. These included high-albedo objects, low-albedo objects,
vegetation, and soil from the original images. Meanwhile, another 800 samples were selected
and used for classification evaluation. The samples were selected from the most extreme areas of
the feature space with the help of Envi4.7 software models (i.e., minimum noise fraction, pixel
purity index, and n-dimensional visualization) and also using LULC category information. More
particularly, the vegetation samples were taken from the areas of dense vegetation cover, the
impervious ones from commercial/industrial areas or major road arteries, the soil from fallow
agricultural land, and the water from areas of clear, deep water.

SVM uses training data to generate a model for estimating the targeted values. Training the
SVM with a radial basis function requires two parameters: the penalty parameter controls the
trade-off between maximizing the margin and minimizing the training error, while the gamma
parameter describes the kernel width. In this study, the SVM library LIBSVM developed by
Chang and Lin40 is employed. The influence of both parameters on the producer’s accuracy
(PA) is analyzed in the process. In Fig. 3, the classification accuracy improves sharply at a
gamma parameter of 0.1 and changes slightly in the range [0.1, 0.6]. The SVM performs better
with a penalty parameter in the range [100, 300] and its accuracy decreases at larger values. To
achieve a better accuracy and a faster processing time, in this study, the gamma parameter and
penalty parameter were set to 0.143 and 100, respectively.

3.2 V–I–S and Knowledge-Based Mapping Models

The V–I–S model [Eq. (1)] is a conceptual framework that groups the great variety of urban land
covers into three general categories—vegetation, impervious surface, and soil—plus water.1

ρi ¼ fimpρimp;i þ fvegρveg;i þ fsoilρsoil;i þ fwaterρwater;i þ ei; (1)

Table 1 Characteristics of satellite data used for the study area.

Path Row

Acquisition Time Sensor

Dataset1 Dataset2 Dataset3

17 29 12 August, 1985 TM 28 September, 1999 ETM+ 3 August, 2005 TM

17 30 25 August, 1984 TM 12 September, 1999 ETM+ 3 August, 2005 TM

18 29 20 September, 1985 TM 3 September, 1999 ETM+ 26 August, 2005 TM

18 30 21 September, 1985 TM 3 September, 1999 ETM+ 11 September, 2005 TM

122 33 14 May, 1987 11 August, 1999 4 September, 2005

TM ETM+ TM

122 32 14 May, 1987 11 August, 1999 4 September, 2005

TM ETM+ TM
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where ρi, ρimp;i, ρveg;i, ρsoil;i, and ρwater;i are the reflectance for land type, impervious surface,
vegetation, soil, and water, respectively, for band i; fimp, fveg, fsoil, and fwater are the correspond-
ing fractions of associated components; and ei is the residual error.

Previous studies35,41 demonstrated that impervious surfaces were located on or near the line
connecting the low-albedo and high-albedo end-members in the feature space. Therefore, the
percentage covered by impervious surfaces can be estimated as a linear combination of low-
albedo and high-albedo surfaces. Then, Eq. (1) can be described as

ρi ¼ flowρlow;i þ fhighρhigh;i þ fvegρveg;i þ fsoilρsoil;i þ ei; (2)

where ρi,ρlow;i, ρhigh;i, ρveg;i, and ρsoil;i are the reflectance for land type, low-albedo, high-albedo
surface, vegetation, and soil, respectively for band i; flow, fhigh, fveg, and fsoil are the corre-
sponding fractions of associated components; and ei is the residual error.

Fig. 2 Processing chain used in the research.
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Equation (2) shows that spectral reflectance of an urban surface is composed of four end-
members (high-albedo objects, low-albedo objects, vegetation, and soil). The mapping model
between V–I–S and the end-members was established based on Eqs. (1) and (2) and on knowl-
edge-based empirical values of the indexes shown in Fig. 2. Generally, low-albedo materials
comprise water, dark impervious surfaces (i.e., asphalt road), and shadow. Water could be easily
extracted according to the low-albedo classification result and the empirical value of MNDWI
(MNDWI > 0.1) derived using Eq. (3).18 Other information such as geospatial vector data (for
example, urban administrative boundaries and road network data) is very useful for separating
different components that have similar spectra. Shadows in urban area make up only small pro-
portions of the whole image and so can be ignored. Areas in shadow outside urban areas gen-
erally consist of the shaded slopes of hills, which can be separated into vegetation or soil by
using the NDVI [Eq. (4)]—threshold for soil: NDVI < 0.2; otherwise, vegetation. High-albedo
materials such as dry soil and sand tend to be confused with bright impervious surfaces. High-
albedo impervious surfaces can be extracted by removing dry sands or dry soils with NDBaI
[Eq. (5)] (dry soil: NDBaI > 0). Following the steps in Fig. 2, we can get four fraction images of
V–I–S and one V–I–S classification image.

MNDWI ¼ ρ2 − ρ5
ρ2 þ ρ5

; (3)

NDVI ¼ ρ4 − ρ3
ρ4 þ ρ3

; (4)

NDBaI ¼ ρ4 − ρ6
ρ4 þ ρ6

; (5)

where ρ2, ρ3, ρ4, ρ5, and ρ6 are the planetary top of the atmosphere reflectance in band 2, band 3,
band 4, band 5, and band 6, respectively.

3.3 Spatial and Temporal Analysis Models

In this study, we used two indicators or models to measure the spatial-temporal dynamics of the
urban environment: rate of change of impervious surface and the aggregation index (AI).

3.3.1 Rate of change of impervious surface

This is calculated using Eq. (6) and compares the dynamic differences of urban impervious
surfaces.

Fig. 3 Three-dimensional graph of gamma parameter (x ), penalty parameter (y ), and producer’s
accuracy (z).
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Ci ¼
Wei −Wbi

Wbi
×
1

t
× 100%; (6)

where Ci is the rate of change of impervious surface during the study period, Wei and Wbi are
impervious surface area or percentage at the end and beginning of the study period, respectively,
and t is the length of the study period measured in years. The results of this calculation give the
annual rate of change of the impervious surface.

3.3.2 Aggregation index

The study also provided quantitative measures of urban growth pattern besides extent and change
estimates in the two urban areas during the two stages. In the field of landscape ecology, a num-
ber of metrics have been developed for assessing urban dispersion. These include the landscape
shape index, AI, split index, and so on. In this research, the AI [Eq. (7)] was selected to measure
class aggregation or clumping, which increases as the patch type becomes more aggregated. The
index is easily calculated using ArcGIS or Fragstats software.

AI ¼
�Xm
i¼1

�
gii

max−gii

�
Pi

�
ð100Þ; (7)

where gii is the number of like adjacencies between pixels of patch type i based on the single-
count method,max -gii is the maximum number of like adjacencies between pixels of patch type
i based on the single-count method, and Pi is the proportion of landscape composed of patch
type i.

In this study, the V–I–S outputs were aggregated into six classes according to impervious
surface percent (ISP), that is, high albedo (ISP [0.8,1]), middle albedo (ISP [0.5,0.8]), low albedo
(ISP [0,0.5]), vegetation, and soil. Then we explored the zonal spatial patterns of the six classes
in the study area (as shown in Fig. 1) using a spatial metric analysis software (FRAGSTATS 3.3).

4 Results and Discussion

4.1 SVM Classification

Four classes—high albedo, low albedo, vegetation, and soil—were derived from Landsat images
at each stage. Accuracy assessment was conducted only for the GTHA as only GTHA has
matched evaluation data. For accuracy assessment, the confusion matrix approach was applied
to extract four accuracy indicators: overall accuracy (OA), user’s accuracy, PA, and the overall
kappa coefficient (OK). The confusion matrix is shown as Table 2.

From the table, it can be seen that, in this study, this type of segmentation method produced
good results with a high OA (96.69%) and high OK (95.58%). The relatively lower separability
between high albedo and soil resulted in a lower PA (86.96%) compared to other end-members.

4.2 VIS Fraction Components

Using the V–I–S model, four fraction images—vegetation, impervious surface, soil, and water—
were developed for Tianjin [Fig. 4(a)] and the GTHA [Fig. 4(b)] in three stages. Three statistical
indicators comparing the estimated V–I–S fraction and the reference data [root-mean-square
error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2)]
were used to evaluate the accuracy of the V–I–S estimation. Detailed formulae and descriptions
of the assessment indicators can be found in Ref. 42. One hundred pixels were able to be selected
using a random function from LULC (Fig. 5) data (only data from 1985 and 2005 were selected
because of considerations of synchronicity), and based on the selected pixels, one hundred
90 m × 90 m samples for statistical analysis were produced (Fig. 6). Due to the different cat-
egories in the V–I–S land surface cover and the LULC data, the classification results could not be
directly compared with LULC data. For this reason, knowledge-based indexes were used to build
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a set of mapping rules for comparison (Table 3). In Table 3, the numbers in brackets [(1) to (9)]
represent different special circumstances as determined by the LULC data, the knowledge-based
indexes (NDVI and MNDWI), and empirical threshold values:18,43 case (1): NDVI > 0.5,
weight ¼ 1; case (2): NDVI < 0.2, weight ¼ 0; case (3): 0.2 ≤ NDVI ≤ 0.5, discard the
pixel; case (4): NDVI > 0.5, weight ¼ 0; case (5): NDVI < 0.2, weight ¼ 1; case (6):
MNDWI > 0.1, weight ¼ 1; case (7): MNDWI < 0.1, weight ¼ 0; case (8): MNDWI < 0.1

and (2), weight ¼ 0; case (9): MNDWI < 0.1 and (5); case (10): for transitional urban recrea-
tional areas and other LULC, discard the sample and then reselect. The urban component frac-
tions equal the sum of the corresponding weights of each category weight divided by the number
of effective pixels (9 pixels × 9 pixels − discarded pixels). The error statistics of the total frac-
tional covers were calculated by comparing the V–I–S mapping model with the LULC data for
the GTHA (Table 4).

Table 2 Confusion matrix of classification accuracies.

Data Type

Classified images

High
albedo

Low
albedo Vegetation Soil Sum

Producer’s
accuracy (%)

Reference
images

High albedo 2087 0 36 277 2400 86.96

Low albedo 0 2400 0 0 2400 100

Vegetation 0 0 2400 0 2400 100

Soil 5 0 0 2395 2400 99.79

Sum 2092 2400 2436 2672 9600

User’s accuracy (%) 99.76 100 98.52 89.63

Overall accuracy (%) 96.69

Overall kappa
coefficient (%)

95.58

Fig. 4 Vegetation, impervious surface, soil, and water fraction images: (a) Tianjin and (b) GTHA.
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The low RMSE and MAE and high R2 of all the fraction components also indicated the high
accuracy of the approach. Among popularly used subpixel classifiers, the linar spectral mixture
analysis-based method tends to overestimate the impervious surface fraction in nonurban areas
and to underestimate it in urbanized areas.9 CART-based methods are more sensitive to data
noise.13 Impervious surface is often confused with dry soil and water. In this case, it is difficult
to accurately segment impervious surface from other objects directly. In our research, we
selected the four end-members according to spectral characteristics and took advantage of
the comparatively accurate and fast processing capability of the SVM algorithm and knowl-
edge-based empirical models to obtain a higher level of accuracy.

4.3 Comparison of Spatiotemporal Patterns in GTHA and Tianjin

Using the V–I–S fraction components, the spatial and temporal dynamics of each component can
be easily depicted. The V–I–S components in municipal districts and metropolitan areas were
extracted from the fraction images. The two graphs—one for the GTHA [Fig. 7(a)] and one for
Tianjin [Fig. 7(b)]—reveal the patterns and processes of urban development in both areas. In the
past 20 years, urban areas have experienced rapid growth. However, there is a great difference
between the situations in the GTHA and Tianjin. For the GTHA, it mainly increased from 1985
to 1999. After 1999, only two municipal areas (Peel and Halton) and four cities (Brampton and
Mississauga in Peel, Vaughan in York, and Burlington in Halton) have positive urban growth
trends. In 1985, only Toronto had a high level of urbanization, while the other areas had rel-
atively low urbanization levels. Thus, urban development in the GTHA could be regarded as
having a monocentric pattern. After 1999, satellite cities or towns adjacent to Toronto, including
Brampton and Mississauga in Peel and Vaughan in York, reached high levels of urbanization and
became new urban centers. At the same time, other satellite cities or towns farther away from
Toronto became subcenters. This could be called a multicentric urban pattern. Tianjin has expe-
rienced continuous rapid urban sprawl since 1985. Since 1999, the rate of urban sprawl has
accelerated at the cost of soil and vegetation loss. In 1985, only the central district had a
high level of urbanization, but in recent decades, the coastal area has developed into a new center
(Binhai New Area). In the ternary diagram (Fig. 8) of the urban environment, all sites in the

Fig. 5 Land use and land cover data from the Canadian Urban Land Use Survey.

Fig. 6 Accuracy assessment flow chart from the vegetation–impervious surface–soil (V–I–S)
mapping model.
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GTHA are near to the vegetation and impervious surface axes, while the ones in Tianjin are near
to the soil (plus water) and impervious axes, which demonstrates the great differences between
the two areas. In the 1980s, soil characteristics are clear for Tianjin due to the image acquisition
date (May); impervious surface fractions at most sites in the GTHA are higher than in Tianjin in
the 1980s and in 1999 but are lower in 2005. In addition, the impervious surface fraction for
Tianjin is increasing at an accelerating rate all the time, while for the GTHA a point of inflexion
has been passed. Finally, the GTHA has a high level of urban greenery, while in Tianjin it is
very low.

Figure 9 shows the annual rate of change in the impervious surface area for the GTHA and
Tianjin. Figure 9(a) indicates that from 1985 to 1999, all sites in the GTHA had positive change
rates, whereas from 1999 to 2005, the rates of change at some sites had turned negative. It can
also be seen that in the first stage, York municipality and its city Vaughan had a high rate of
change due to its proximity to Toronto; in the second stage, the rate of change at all sites was far
slower than in the first stage. From Fig. 9(b), it can be seen that in the first stage, the rate of
change was ∼5%, whereas in the second stage, it had reached 25% in the Beichen district.

Figure 10 illustrates the spatiotemporal dynamics of the urban growth patterns of the study
areas. From Fig. 10(a), it can be seen that all districts in the GTHA became more disaggregated
from 1985 to 1999 and more aggregated from 1999 to 2005. For Tianjin [Fig. 10(b)], it can be
seen that more patches became aggregated in the first stage and became more decentralized in
urban areas in the second stage, except for central Tianjin.

Table 3 Mapping rules for mapping weights of land use and land cover (LULC) contribution to
vegetation–impervious surface–soil (V–I–S) fraction (1 means 100%; 0 means 0%).

LULC I V S W

Water 0 0 0 1

Urban openland 0 (1)(2)(3) (3)(4)(5) 0

Residential (3)(4)(5) (1)(2) (3) 0 0

Commercial/industrial 1 0 0 0

Bare rock/sand/clay 0 0 1 0

Quarries/mines/gravel 1 0 0 0

Forest 0 1 0 0

Agricultural 0 (1)(2)(3) (3)(4)(5) 0

Grassland 0 (1)(2)(3) (3)(4)(5) 0

Woody wetland 0 (1) (3) (8) (3) (4)(9) (6)(7)

Emergent wetland 0 (1) (3) (8) (3)(4)(9) (6)(7)

Transportation 1 0 0 0

Transitional, urban
recreational, and other

(10) (10) (10) (10)

Table 4 Accuracy assessment of fractional estimation results for V–I–S components.

Components fraction Root-mean-square error (%) Mean absolute error (%) R2

Vegetation fraction 4.657 1.256 0.978

Impervious surface fraction 6.432 3.421 0.951

Soil fraction 6.241 4.125 0.943

Water fraction 3.124 1.124 0.985
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4.4 Discussion

In this study, we used the MNDWI to remove the water from the low-albedo fraction image and
used the NDBaI to eliminate dry soils from the high-albedo fraction image. The evaluation of the
accuracy showed that the accuracy was high. However, we could not remove the shade from urban
areas in the low-albedo fraction image, although this could correspond to impervious surface. Also,
the NDBaI index could only eliminate very dry soils (primary barren soil). In the evaluation proc-
ess, samples containing transitional and urban recreational areas were discarded. In fact, these areas
could contain multiple categories. Therefore, we need to evaluate the validity of this method in
future work, focusing on transitional urban areas. In addition, this assessment was carried out for
the GTHA only due to the lack of synchronous high-resolution images for Tianjin.

Fig. 7 The temporal–spatial dynamics of VIS components: (a) GTHA and (b) Tianjin.

Fig. 8 A dynamic ternary V–I–S diagram for municipal districts and metropolitan areas in the
GTHA and Tianjin areas.

Fig. 9 Annual rate of change rate of impervious surfaces: (a) Tianjin and (b) GTHA.
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The spatiotemporal dynamics of the GTHA and Tianjin revealed that there were great
differences between the two urban areas. This could be related to factors such as population
and policy. According to census data, the proportion of the population classified as urban in
Tianjin was 53.70, 57.29, and 75.11% in 1985, 1999, and 2005, respectively. In the GTHA,
it exceeded 82% in 1985. Figure 11(a) illustrates population and population density in Tianjin,
the GTHA, and their central cities (central Tianjin and Toronto). The most surprising feature
of this graph is that the population density of central Tianjin far exceeds that of the other
areas, although there is no obvious population density difference between Tianjin and the GTHA
and other pairs of population and population density curves (GTHA and Tianjin; Toronto and
central Tianjin) are almost parallel. The large increase in the urban population percentage in
Tianjin and the high population density in central Tianjin may partly account for the rapid
increase in impervious surfaces. However, population and population density increases in
the GTHA and Toronto did not bring about a corresponding appreciable increase in impervious
surfaces from 1999 to 2005, which implies that another factor played an important role in the
urban development. Since the 1990s, experts in urban studies and environmentalists in Canada
have raised concerns about the region’s rapid, low-density pattern of land development, calling
for better management of future land-use decisions. The provincial government has also intro-
duced related legislation, such as the “Places to Grow Act 2005.” In contrast, China experienced
a real estate bubble in the 1990s, which resulted in a disorganized expansion of developed land.
These different policy principles are another factor impacting on the dynamics of the urban eco-
logical environment.

Fig. 10 The spatiotemporal dynamics of urban dispersion in municipal districts and metropolitan
areas: (a) GTHA and (b) Tianjin.

Fig. 11 Population time series.
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5 Conclusions

This study explores the application of the V–I–S method in large-area urban agglomeration map-
ping and ecological environment analysis. First, four end-members (high-albedo surface, low-
albedo surface, vegetation, and soil) were selected for classification using the SVM algorithm.
The accuracy of the classification results reached 96.69%. Next, to map the SVM results to V–I–
S component fractions, a knowledge-based method was applied to the results to establish a map-
ping model—the RMSE ranged from 3.12 to 6.43% and R2 ranged from 0.94 to 0.99. Finally, a
spatiotemporal analysis was conducted for municipal and metropolitan areas in Tianjin, China,
and the GTHA, Canada. We found that both urban areas experienced rapid growth in the period
from 1985 to 2005. For the GTHA, urban sprawl mainly occurred from 1985 to 1999. Urban
development patterns underwent a change from monocentric (based on Toronto) to multicentric
(based on Toronto, Brampton, and Vaughan). For Tianjin, all districts underwent rapid urban
expansion, with the rate accelerating after 1999. The aggregation index results reveal that
the GTHA and its municipal areas became more disaggregated from 1985 to 1999 and then
more aggregated from 1999 to 2005, which implies that the Canada government’s initiatives
achieved their intended result of compact growth. Most urban sites in Tianjin showed the oppo-
site trend. The results reveal different patterns of sprawl in the GTHA and Tianjin, which may
reflect the demographic and economic influences on urban environments across the globe.
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