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Abstract. The three-dimensional (3-D) structure of forests, especially the vertical structure, is an
important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic
aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation
along elevation coordinates. Due to the advantages of super-resolution imaging and a small num-
ber of measurements, distribution compressive sensing (DCS) inversion techniques for polari-
metric SAR tomography were successfully developed and applied. This paper addresses the 3-D
imaging of forested areas based on the framework of DCS using fully polarimetric (FP) multi-
baseline SAR interferometric (MB-InSAR) tomography at the P-band. A new DCS-based FP
TomoSAR method is proposed: a new wavelet-based distributed compressive sensing FP
TomoSAR method (FP-WDCS TomoSAR method). The method takes advantage of the joint
sparsity between polarimetric channel signals in the wavelet domain to jointly inverse the reflec-
tivity profiles in each channel. The method not only allows high accuracy and super-resolution
imaging with a low number of acquisitions, but can also obtain the polarization information of
the vertical structure of forested areas. The effectiveness of the techniques for polarimetric SAR
tomography is demonstrated using FP P-band airborne datasets acquired by the ONERA SETHI
airborne system over a test site in Paracou, French Guiana. © The Authors. Published by SPIE under
a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9
.095048]
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1 Introduction

By using multiple baseline acquisitions along the direction of elevation, synthetic aperture radar
tomography (TomoSAR) can extend conventional two-dimensional (2-D) SAR imaging to a
three-dimensional (3-D) reconstruction. For every azimuth-range pixel, this technique can recon-
struct the reflectivity function along the elevation direction (this direction is perpendicular to the
azimuth and range direction) by using the formation of an additional synthetic aperture in eleva-
tion. In this way, SAR tomography can lead to a refined analysis of volume structures, namely
forested areas.

Actually, the focused SAR image from multiple baseline acquisitions is the Fourier transform
of the reflectivity function in the elevation direction.1 Therefore, SAR tomography can be con-
sidered a spectrum estimation problem. There are several spectral analysis techniques used to
perform tomography, such as beamforming, Capon,2,3 multiple signal classification,4 truncated
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singular value decomposition,4 and weighted subspace fitting estimators.5 However, in practice,
due to unevenly sampled acquisitions, infrequent passes over the area of interest, and limited
overall acquisition baseline extent, these techniques generally bring about some quality prob-
lems in the estimation accuracy of the positions of scatterers and the resolution power such that
scatterers can be discriminated. Recently, compressive sensing (CS)6,7–10 has been used for SAR
tomography. The sparse reconstruction technique aims at using a small number of acquisitions to
construct the 3-D image with a super-resolution power under the condition that the reflectivity
signal is sparse along the elevation direction. The theory and practice of CS-based SAR tomog-
raphy have been well developed for signals in the single range-azimuth resolution cell.11–14

However, in the analysis of forest scenes, it is difficult to use the CS technique in the retrieval
of the vertical distribution of the backscattered power, mainly because the reflectivity signal of
the distributed media is rarely sparse in the object domain and the optimal sparse representations
of the reflectivity signal of the distributed media must be exploited in forested areas. A good
solution may be found in the work by Aguilera et al.15,16 The authors exploited suitable sparse
representations of forested areas in the wavelet domain. In order to further discriminate and
characterize the objects under analysis using their polarimetric responses, they extended this
method to the FP case.17 In the process of signal recovery, the method in Ref. 17 takes advantage
of the inter-signal correlations between scattering mechanisms by means of distributed compres-
sive sensing (DCS), which enables the joint recovery of multisignal ensembles through exploit-
ing their joint sparsity.

Furthermore, for the backscatter from the same structure, the signals from polarimetric chan-
nels also have approximately joint sparsity. Therefore, in this paper, we proposed a new wavelet-
based distributed compressive sensing FP MB-InSAR tomography method (FP-WDCS
TomoSAR method). In the process of signal recovery, this method mostly focuses on taking
advantage of the inter-signal correlations between polarimetric channels, but not scattering
mechanisms by means of DCS, because the sensors from different polarimetric channels mostly
observe the same target area and the ensemble of signals can be expected to possess similar joint
structures.

This paper is outlined as follows. General SAR tomographic signal models and the DCS
methodology in SAR tomography are given in Sec. 2 as well as the proposed method. In
Sec. 3, the datasets used are listed. In Sec. 4, the super-resolution power of our approach is
analyzed and the performance of our approach is demonstrated by MB-PolInSAR datasets
acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana.
Finally, conclusions are drawn in Sec. 5.

2 Methodology

2.1 Tomographic Synthetic Aperture Radar Imaging Model

Through multiple baseline synthetic aperture radar (SAR) observations over the same target area
at different times and slightly different orbit positions (the elevation aperture), a stack of N com-
plex SAR datasets can be obtained. Each perpendicular baseline with respect to a master track
can be calculated. Let the baselines (or the elevation aperture positions) be bn. After some prepa-
ration of the stack of data (registration and phase compensation, for example), the focused com-
plex value gn of an azimuth-range pixel ðx0; r0Þ of the nth acquisition is

EQ-TARGET;temp:intralink-;e001;116;189gn ¼
Z
Δs

γðsÞ expð−j2πξnsÞds; (1)

where γðsÞ represents the reflectivity function along elevations s and Δs describes the range of
possible elevations.18 ξn ¼ −2bn∕ðλr0Þ is the spatial (elevation) frequency depending on the
(more or less random) elevation aperture position bn, range r0, and the wavelength λ. We
can see from the continuous-space system model of Eq. (1) that the multibaseline data acquis-
ition is actually a randomly sampled Fourier transform of γðsÞ. Thus, an inherent Rayleigh res-
olution in elevation is ρs ¼ λr∕ð2ΔbÞ, where Δb is the elevation aperture size. Through
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approximation by discretizing the continuous reflectivity function along s, in the presence of
noise ε, the discrete reflectivity function-space system model can be written as

EQ-TARGET;temp:intralink-;e002;116;711g ¼ Rγ þ ε; (2)

where g is the measurement vector with N elements gn, R is an N × L mapping matrix with
Rn×l ¼ expð−j2πξnslÞ, and γ is the discrete reflectivity vector with L elements γl ¼ γðslÞ. sl
(l ¼ 1; : : : ; L) denotes the discrete elevation positions. Equation (2) is a sampled discrete
Fourier transform of the elevation profile γðsÞ.

2.2 Covariance Matching-Based Tomographic Synthetic Aperture Radar

The distributed media, like rough ground and canopy, are characterized by a scattering response
having a random behavior conferred by the speckle effect. Therefore, in forested areas, we need
to use the statistical nature of the scattering response of the observed objects, which can be
characterized through second-order moments of data, like the data covariance matrix, and
the information of the multiple range-azimuth resolution cells must be considered.

In multiple SAR observations, we expect that the main structural characteristics of the target
objects remain unchanged. This consideration can easily be approximated by tomographic
acquisition within a short time. This hypothesis suggests that the temporal decorrelation of
these stationary target objects is negligible. Thus, the covariance matrix of g can be written
out as

EQ-TARGET;temp:intralink-;e003;116;476C ¼ EfggHg ¼ R diagðpÞRH þ σ2I; (3)

where Ef·g is the expectation operator, (·) denotes the conjugate transpose, p is a non-negative
real vector, diagðpÞ is a matrix whose main diagonal equals p and is made up of zeros in its off-
diagonal entries, and σ2 is the unknown noise power.19 Moreover, Eq. (3) can be rewritten as a
linear equation:

EQ-TARGET;temp:intralink-;e004;116;396b ¼ Apþ z (4)

with

EQ-TARGET;temp:intralink-;sec2.2;116;353bjþðk−1Þ�j ¼ Cj;k

EQ-TARGET;temp:intralink-;sec2.2;116;314Ajþðk−1Þ�j ¼ Rj⊙RH
k

EQ-TARGET;temp:intralink-;sec2.2;116;274zjþðk−1Þ�j ¼ σ2δj−k;

where 1 ≤ j; k ≤ N, Rj represents the j’th row of R, and ⊙ indicates the element-wise multi-
plication. In this paper, the objective of TomoSAR concerns the estimation of reflectivity profile
P for each azimuth-range pixel from the covariance matrix of the multibaseline measured sig-
nal g.

2.3 Distributed Compressive Sensing

CS builds on the ground-breaking work of Candes, Romberg, Tao, and Donoho,7–10 who showed
that one can recover a signal f ∈ Rn from m corrupted linear measurements b ¼ Af þ z, where
A is an m by n sensing matrix with m typically being much smaller than n and z being an
arbitrary and unknown vector of noise. The theory asserts that if f has approximately sparse
representation in one basis Ψ, then it is indeed possible to recover f from a small number
of projections b, under the condition that A is incoherent with Ψ, by L1 minimization:
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EQ-TARGET;temp:intralink-;e005;116;735min
f̃
kΨf̃k; subject to kAf̃ − bk2 ≤ ε; (5)

where ε is an upper bound on the noise level.
Since the sensors presumably observe the same target area, the ensemble of signals acquired

by sensors can be expected to possess some joint structures. In this way, DCS20 theory extends
the concept of a signal being sparse in some basis to the concept of an ensemble of signals being
jointly sparse. It enables the joint recovery of multisignal ensembles through exploiting both
intra- and inter-signal correlation structures. The DCS technique has been thoroughly studied
and can be found in the literature.20,21 In this study, we applied the DCS method to SAR tomog-
raphy. One advantage of this method is that it allows us to reduce the number of measurements
needed for reconstruction.20 Thus, for SAR tomography, this model allows us to reduce the
number of 2-D SAR images.

2.4 Fully Polarimetric Wavelet-Based Distributed Compressive Sensing
Tomosynthetic Aperture Radar Method

In this section, DCS inversion techniques for multibaseline PolInSAR (MB PolInSAR) of for-
ested areas will be introduced.

As described in Sec. 2.2, Eq. (4) expressed the tomographic sensing operation (using parallel
tracks) for the signal of one azimuth-range pixel in one channel. It can be written as

EQ-TARGET;temp:intralink-;e006;116;486bxy ¼ Apxy þ zxy; xy ¼ HH;HV; or VV: (6)

In our method, we suppose that the signals throughout polarimetric channels share, approxi-
mately, the same joint structure, because we are expecting backscatter from the same forested
scene. In this way, considering an ensemble of signals of all channels, it will be jointly expressed
as

EQ-TARGET;temp:intralink-;e007;116;407B̃ ¼ AP̃þ Z̃; (7)

where ½bHHbHVbVV� ¼ B̃, ½pHHpHVpVV� ¼ P̃.
Based on the DCS technique, we can simultaneously focus on all channels with a mixed L2;1

minimization:21

Fig. 1 Flow diagram of the fully polarimetric wavelet-based distributed compressive sensing (FP-
WDCS) synthetic aperture radar tomography (TomoSAR) method.
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EQ-TARGET;temp:intralink-;e008;116;735min
G̃

kΨP̃k2;1 subject to kAP̃ − B̃kF ≤ ε; (8)

where Ψ is a sparse basis and k · k2;1 is the mixed norm (sum of the L2 norms of the rows of a
matrix). The L2;1 norm not only promotes sparsity along rows and minimizes the energy along
columns, but also exponentially reduces the probability of recovery failure in the number of
columns of P̃.21

The distribution of the backscattered power over forested areas is not sparse in the object
domain19,22–24 because at least the Fourier spectrum of canopy backscatter is spread along the
cross-range direction. Thus, a sparse basis needs to be found. Here, we use the wavelet basis as a
sparse basis in which the profile p has an approximately sparse representation.15,16

However, for all possible practical observed forested terrains, it is very complicated to find a
theory providing analysis on the performance of sparsity of the reflectivity profile in the wavelet
basis. Thus, the FP-WDCS TomoSAR method may not be suitable in almost all cases. The
process of the FP-WDCS TomoSAR method is shown in Fig. 1.

3 Datasets

To demonstrate the potential of the outlined approach, we used a stack of N ¼ 6 focused and
coregistered P-band FP SAR images of the forest site of Paracou, French Guiana (Fig. 2),
acquired by the ONERA SETHI airborne system on August 24, 2009, within the framework
of the European Space Agency (ESA) TropiSAR 2009 campaign. The most common soils
in Paracou are shallow ferralitic soils. The dominant woody species at the site include
Lecythidaceae, Leguminosae, Chrysobalanaceae, and Euphorbiaceae. The tomographic data
were acquired with vertical baselines of 50, 100, 150, 200, and 250 feet. The spatial resolution
is approximately 1.000 m in the slant range direction and 1.245 m in the azimuth direction. The
look angle varies from 25 deg to 60 deg from the near to far ranges, resulting in the Rayleigh
resolution along the vertical direction varying from 21.403 to 41.523 m. Finally, all acquisitions
were acquired within a 2-h period, making temporal decorrelation negligible. The flight plan is
reported in Table 1 and 2. Finally , the software we used to solve the minimization problems
was CVX.25

Fig. 2 Paracou test site: (a) Google Earth image; (b) SAR image.
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4 Numerical Experiment

4.1 Super-Resolution Power of the Compressive Sensing Framework-Based
Estimator

For single-channel CS-based TomoSAR, the CS theory ensures that when the measurements are
partial Fourier measurements, it is possible to recover with overwhelming probability the K
largest αi from a number of measurements satisfying the inequality:26–28

EQ-TARGET;temp:intralink-;sec4.1;116;307M ≥ CK log ðNÞ4:

Thus, for single-channel CS-based TomoSAR, the super-resolution factor ηsup is11

EQ-TARGET;temp:intralink-;sec4.1;116;263ηsup ≤ exp

��
M
CK

�1
4

�
λR0

2S1ST

M: the number of scenes
C: very small constant
K: the number of nonzero coefficients of the signal
S1: the illuminated scene extension in the elevation direction (range of possible elevations).

See Table 3 for details of the super-resolution power of the CS-based TomoSAR technique in
our numerical experiment.

4.2 Real Data

To demonstrate the performance of the FP-WDCS TomoSAR method, this section is devoted to
reporting the tomographic results of the method on the real data introduced in Sec. 3.

Table 2 Flight parameters.

Number Flight date Baseline(m)

1 24/08/2009 0

2 −14.4879

3 −30.1163

4 −43.8343

5 −60.0632

6 −74.9683

Table 1 ONERA SETHI airborne system parameters.

Parameters

Wavelength 0. 7542 m (P-Band)

Range distance 4905 m

Incidence angle 35.0614 deg

Range resolution 1.000 m

Azimuth resolution 1.245 m
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First, in order to demonstrate the advantages and disadvantages of the approach, we carried
out tomographic processing at a fixed range distance of 550 m and for 700 contiguous azimuth
positions (see the red dashed line segment in the test zone shown in Fig. 3) on the stack of six
focused and coregistered P-band FP SAR images of the forest site of Paracou. The size of the
estimation window used for covariance estimation was set to 39 × 39 pixels (ground range, azi-
muth) for the method.

To facilitate the interpretation of the method’s inversion results, LIDAR-based terrain and
canopy elevation estimates were used in the results. The LIDAR digital elevation model (DEM)
and canopy model over Paracou were provided courtesy of CIRAD and the Guyafor project. The
LIDAR measurements were resampled onto the SAR slant range azimuth coordinates and spa-
tially averaged for application to the inversion results of the method.

For the FP-WDCS TomoSAR method, the sparsifying basis we used in this forested area was
based on the Daubechies Symmlet wavelet with four vanishing moments and three levels of
decomposition. As a result, we obtained slices in the azimuth and elevation directions of dimen-
sions 871.5 × 120 m2, respectively. Figure 4 shows the three normalized tomograms and the
corresponding discrete sources’ distribution from peaks of the reflectivity spectrum, which result
from joint reconstruction by the FP-WDCS TomoSAR method for each polarimetric channel.
Through joint recovery of multiple channels, the different elevation profiles of vegetation are
present in different polarimetric channels. We can see in Fig. 4 that the HH channel mainly
includes the reflectivity signal from the ground, like the one contributed by ground-trunk scat-
terers, due to sensitivity to double-bounce reflections over dihedral-like objects. Furthermore,
the reflectivity signal from the canopy is mainly present in the HV channel because it is more
sensitive to volumetric scatterers.

Moreover, the elevation profiles in the HVand VV channels (see Fig. 4) show that the spatial
structures of the SM associated with the canopy backscatter agree with LIDAR measurements
(see the top black line in Fig. 4). However, there are obvious errors between the spatial structures
of the SM from ground scattering and LIDAR measurements (see the bottom black line in
Fig. 4). One possible reason is that the SM associated with ground scattering is probably domi-
nated by trunk-ground scattering. Thus, the reflectivity signal from ground scattering is an
approximately point-like reflection which has no sparse representation in a wavelet basis.

To further demonstrate the performance of the FP-WDCS TomoSAR method, two traditional
nonparametric estimators, namely, the FP beamforming method and FP Capon method, were
used to compare to it. The specific processes of the FP Capon method and FP beamforming
method are introduced in Refs. 7,29–31.

Fig. 3 Test site (red dashed line).

Table 3 Super-resolution power of the compressive sensing (CS)-based synthetic aperture radar
tomography (TomoSAR) technique.

Number of scatterers K Super-resolution factor ηsup (Resolution m) (M ¼ 6, C ¼ 0.017)

1 15.260 (1.403–2.720 m)

2 7.655 (2.796–5.454 m)

3 5.387 (3.973–7.708 m)
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Figure 5 shows the estimated power with the FP Capon and FP beamforming methods in the
azimuth-elevation plane. In Fig. 5, the FP Capon estimator has a higher resolution than FP beam-
forming. However, the resolution limitation of both methods blurs the power profile for each
pixel, meaning that the limited spectral resolution of both methods affects the accuracy of the
height estimation.

Moreover, we calculated the root-mean-square error (RMSE) of ground, canopy, and tree
height estimation based on LIDAR measurements with the three tomography methods
(Table 4). Table 4 shows that the FP-WDCS TomoSAR method has the best performance in
the RMSE of ground, canopy, and tree height estimation compared with the other two methods.

Fig. 4 (a, c, e) Reflectivity tomograms in the HH channel (a, b), (c, d), HV channel, and (e, f) VV
channel. The panels have been normalized, such that the sum along the height is unitary. The
lower and upper black lines, respectively, represent the position of ground and top of tree in the
elevation direction provided by LiDAR measurements, and (b, d, f) the lower and upper red lines
are the corresponding discrete source distributions from ground and top of tree.
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5 Conclusions and Future Work

In this paper, we proposed a new DCS framework-based FP MB-InSAR tomography method
that allows a jointly reflectivity profile reconstruction from FP channels in forested areas along
the elevation direction using signals acquired from a small number of orbits and different polari-
zation channels.

Based on the assumption that the reflectivity signal of forested areas along the elevation
direction is sparse or compressible in a wavelet domain, the FP-WDCS TomoSAR method ena-
bles the joint recovery of FP signal ensembles through the DCS technique to exploit both intra-
and inter-signal correlation structures between polarimetric channel signals.

SP analysis shows clearly that the CS framework-based estimators provide a better super-
resolution power for localizing objects with complex structures compared to features with a

Table 4 Root-mean-square error (RMSE) of height estimation with four TomoSAR methods.
Mean of tree height is 28.4790 m.

RMSE FP-WDCS FP-beamforming FP-Capon

Ground height 1.7182 3.2284 2.3563

Canopy height 3.6669 4.8317 5.0071

Tree height 4.5389 6.3499 5.9288

Fig. 5 (a, c) Reflectivity tomograms of (a, b) the FP beamforming and (c, d) FP Capon methods.
The panels have been normalized, such that the sum along the height is unitary. The lower and
upper black lines, respectively, represent the position of ground and top of tree in the elevation
direction provided by LiDAR measurements, and (b, d) the lower and upper red lines are the cor-
responding discrete source distributions from ground and top of tree.
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limited resolution shown by the traditional nonparametric estimators. Real data experiments
show that the estimation accuracy of ground and canopy height obtained using the proposed
method is much better than the traditional nonparametric estimators.

Therefore, further work will focus on trying to compare and analyze the performance of the
estimation accuracy of canopy height using the DCS method with or without sparse expansions
in the wavelet domain. Moreover, a detailed evaluation of the estimation accuracy and super-
resolution power and robustness of those techniques through simulation experiments will be
carried out.
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