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Abstract. This paper presents a proof of concept sensor system based on a linear array of pyroelectric detectors
for recognition of moving objects. The utility of this prototype sensor is demonstrated by its use in trail monitoring
and perimeter protection applications for classifying humans against animals with object motion transverse to the
field of view of the sensor array. Data acquisition using the system was performed under varied terrains and
using a wide variety of animals and humans. With the objective of eventually porting the algorithms onto a low
resource computational platform, simple signal processing, feature extraction, and classification techniques are
used. The object recognition algorithm uses a combination of geometrical and texture features to provide limited
insensitivity to range and speed. Analysis of system performance shows its effectiveness in discriminating
humans and animals with high classification accuracy. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Perimeter protection and monitoring of national borders are
challenging tasks. For example, the U.S.-Mexico border is
about 3000 km long and mostly passes through uninhabited
areas and rough terrain. The use of manpower to secure this
region is very expensive. As a result, there has been growing
interest in developing unattended ground sensor systems to
address this problem. One approach is to deploy a large num-
ber of low cost sensing systems over the length of the boun-
dary that needs to be protected. Since physically accessing
the location of a sensor may be difficult and in many cases
dangerous, sensors should be capable of operating over long
periods without battery replacement. This necessitates
the sensors to be capable of operating at low power levels
and on resource starved computing platforms. A very
common discrimination task in these scenarios is distin-
guishing between humans and animals. An alarm is typically
needed only when a human is detected by the sensor. Most of
the ground sensor literature dealing with such scenarios and
constraints are typically nonimaging in nature. These sensors
include acoustic sensors that measure sounds generated by
objects, seismic sensors that measure ground vibrations,
E-field sensors that measure static charges on objects, B-
field sensors that measure ferromagnetic materials such as
fire arms, and RF sensors that can detect cell phone activity.1

Acoustic sensors have been used to classify different types of
ground vehicles by fusing features associated with engine
noise and other minor acoustic factors such as tire friction
noise.2 Seismic sensors have been used in conjunction with
copula theory based hypothesis testing to detect human
foot steps.3 Wavelet transform followed by symbolic dynam-
ics based feature extraction was applied to data generated
from seismic sensors and a single element pyroelectric

infrared detector to distinguish between humans and ani-
mals.4 Sparse dictionary learning techniques have also been
applied to seismic sensors to classify human and human
with animal categories.5 Nonimaging target detections and
tracking systems have also been designed by coherently
fusing large number of fiber optic cables, creating a noncon-
ventional optic to detect bright objects.6

Conventional imaging systems have been used exten-
sively in intelligence, surveillance, and reconnaissance appli-
cations. These systems have typically been based on using
two-dimensional (2-D) focal plane arrays. The disadvantage
of such systems for applications of interest in this paper,
namely deployment in inaccessible terrains, is power con-
sumption and cost. If the discrimination task is narrowed
down to specific classes such as distinguishing between
humans, animals, and vehicles at ranges not exceeding a
few tens of meters, high resolution, high bit depth imaging
systems may not be required. This scenario is true especially
in the terrains in which objects can only travel through spe-
cific routes consisting of narrow trails. An example of a low
resolution, low bit depth image includes an active near-infra-
red optical trip wire style system.7–9 The system consists of
two vertical posts with one post lined with near-infrared
transmitters and receivers. The other post, placed directly
opposite, consists of reflectors. The system forms a vertical
linear array of pairs of transceivers and reflectors. Each post
is placed on the opposite sides of a bottleneck in a trail.
When an object walks between these posts, it breaks the opti-
cal path of the beam between the transceiver and the reflec-
tor. The shape or the profile of the object is traced at the
output of the system. This system has provided high classi-
fication accuracy in discriminating humans, animals, and
vehicles. Another version of this system includes spreading
the transceiver-reflector elements along a trail instead of
being placed on posts. Being an active system, the power
consumption of the trip wire style system is higher than*Address all correspondence to: Srikant Chari, E-mail: srikchari@gmail.com
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what is optimally required. Another disadvantage of this
technique is that it requires the object to strictly follow
the trail. These obstacles are overcome by the use of a pas-
sive linear array which does not require transceiver-reflector
pairs and only requires that the object move in a transverse
direction to the linear array. Fang et al. used a pyroelectric
detector pair in conjunction with a Fresnel lens array to dis-
criminate between individual humans registered in a data
base and also reject unregistered humans.10 Hao et al.
used distributed wireless pyroelectric detector pairs to differ-
entiate between different walking humans.11 In this paper, a
linear array of pyroelectric detectors is used. Initial design
and testing of a linear array using such a system showed
promising results.12 Another aspect that differentiates the
research reported here from the previous efforts is that, in
this paper, a two class problems of discriminating humans
versus animals is addressed. Further, a more comprehensive
performance analysis is performed using a larger data base of
objects. Section 2 of this paper provides details of the pyro-
electric linear array (PLA) sensor along with an analytic form
of the step response of the pyroelectric detector. Section 3
describes the human and animal signature characteristics
as acquired by the sensor. Target detection using thermal
signature characteristics of the pyroelectric detector are also
presented in this section. Section 4 describes various feature
extraction and classification algorithms used to classify
humans and animals. Results and analysis of classification
performance are reported in Sec. 5. In Sec. 6, conclusions
drawn from this research and future efforts to make improve-
ments in the sensor system are provided.

The key contribution of this paper is the development of
a linear pyroelectric array sensor system. In conjunction
with simple signal processing and classification algorithms,
it is shown that the system can be used to effectively
detect and discriminate humans and animals which makes
it relevant for perimeter protection and trail monitoring
applications.

2 PLA Sensor Design
In this section, first the specifications of the PLA sensor are
provided. Next, the response of the pyroelectric detector is
discussed in which the detector current and step voltage
response of the pyroelectric detector are derived. These
equations can provide insight into the characteristics of sig-
nals generated by the PLA system in sensing humans and
animals.

2.1 Sensor Specifications

A schematic of the PLA sensor is shown in Fig. 1. Previous
research indicated that 17 samples over a human, of height
2 m, provided sufficient information for accurate target dis-
crimination.9 The design process started with the choice of a
Dias 128 element linear array of pyroelectric detectors. The
size of each detector is 90 μm × 100 μm with a pitch of
100 μm. A germanium lens with an F-number of 0.86
and focal length of 50 mm was chosen to provide a detector
instantaneous field of view (IFOV) is 1.8 mrads × 2 mrads.
As a result, the extent of the spatial sample at a range of 30 m
is 5.4 cm × 6 cm, providing the required 17 samples over the
height of a 2-m tall human. Finally, the lens and the linear
detector array were packaged with a18F4550 pic micro-con-
troller for A/D conversion and communication. The sensor
system operates at a sampling rate of 20 Hz. A photo of
the sensor package is shown in Fig. 2. The current prototype,
which is a proof of concept system, operates on a standard
9 V battery that can power the PLA sensor for 4 h in con-
tinuous operation. It should be noted that the prototype is not
intended for continuous operation. The sensor system is to be
deployed in terrains where the monitored trails are used
infrequently and signals present themselves for acquisition
for only a few minutes a day. The PLA sensor will be a
part of a sensor network with other low level sensors that
will cue the PLA sensor to turn on and acquire data for
short periods of time. For applications of interest such as
trail monitoring, this infrared PLA sensor with one column
of sensors has an advantage over conventional infrared 2-D
focal plane array sensors in terms of power consumption.

Fig. 1 Schematic of pyroelectric linear array (PLA) sensor.

Fig. 2 Photo of PLA sensor.
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2.2 Pyroelectric Detector Response

The response of a pyroelectric detector was analyzed in a
previous paper.13 As shown there, the voltage response of
a detector to an optical source whose temporally varying
power on the detector is PdðtÞ can be found from
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gVαpAd
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where the definitions of the various symbols are those shown
in Table 1. Further detail may be found in Ref. 13.

The step response can be found by substituting PdðtÞ ¼
P0 þ ΔPuðtÞ into Eq. (1), with P0 and ΔP constants. The
function uðtÞ is the Heaviside step function. The resulting
step response is given by
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As will be further illustrated through examples in Sec. 3,
the difference of exponentials in Eq. (2) explains the rapid
change in voltage at the output of the detector as a hot object
enters the field of view (FOV) of the sensor. Similarly, it
explains the fact that as the hot body leaves the FOV of
the sensor an opposite change in the output voltage is
observed. For an object colder than its background, the volt-
age swing polarities are reversed. In summary, a body of
uniform temperature would produce an output response
only when it enters or leaves the FOV of the sensor.

3 PLA Signal Analysis
Data collection using the PLA sensor was performed in two
geographically distinct locations. One location was near
the U.S.-Mexico border which had an arid terrain with
thorn bushes forming significant portions of the vegetation.
The other location was a petting zoo near Memphis,

Tennessee, where the terrain was covered with grasses,
trees, and rolling hills. The human category was represented
by males and females with varying physical builds. The data
collected in the petting zoo included animals such as minia-
ture cows, small donkeys, and small ponies. The data
collected in the Arizona site included large horses. This dif-
ferent set of animals in the two locations allowed for a
diverse set for the animal class. The terrain and animal
behavior did not allow for accurate speed measurements
or range measurement to be made for each individual target.
The speeds of the moving target are described simply by cat-
egorizing them as either walking or running and the targets
were allowed to traverse at a range of 10 to 20 m from the
sensor. It should be noted that the claim made in this paper,
that the PLA system has limited speed and range insensitiv-
ity, is based on its ability to discriminate targets at the above
specified range limits and speed categories. The objects
moved in a direction that was transverse to the FOV of
the sensor array. As the objects move through the FOV of
the vertical linear array, the object thermal signature is traced
out as a function of time over the 128 detectors. Thus each
object generatesD × N data points. Here,D is the number of
detectors on the linear array that sense the complete extent of
the object andN ¼ T × R, where T corresponds to the period
for which the object traverses in the FOVof the sensor and R
is the sampling rate of the sensor. For visualization purposes,
theD × N data points can be displayed as images as in Fig. 3
which shows the output image of the PLA sensor with three
horses. Figure 4 shows six humans and Fig. 5 shows a human
followed by a miniature cow.

The process of object detection and segmentation
involves first determining the presence of large sized objects
in the image, next the suppression of isolated noise is imple-
mented, and finally objects that may have fragmented are
grouped back together. The initial process of detection is
done using a statistical threshold. To determine the threshold
for a given instant of time, a constantly updating buffer is
used. For any instant of time, the buffer contains the previous
Nb time samples from the output of each of the detectors.
The mean μ and standard deviation σ are then estimated
for each detector at that time instant based on the data in
the buffer. If the samples at a given instant of time have a
value that is Sσ away from the mean, then the output of
the corresponding detector is marked as a potential target.
A value of S ¼ 1.5 was determined to be an effective

Table 1 Definitions for Eq. (1).

Symbol Definition

gv Amplifier gain

α Detector absorptivity

p Pyroelectric coefficient

Ad Detector area

Ce Combined amplifier/detector
capacitance

Cp Detector heat capacity

τE Electrical time constant

τT Thermal time constant

Fig. 3 Output of PLA sensor showing three horses.

Fig. 4 Output of the 128 detectors versus time showing six humans.
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value as a multiplicative constant for σ. The buffer is updated
for the next time instant on a first-in first-out basis. When a
target is moving in the FOVof the sensor, a large number of
detector outputs in a given spatiotemporal neighbor exceed
the Sσ threshold. Following the Sσ thresholding of individual
detector outputs, a spatial temporal size threshold is used to
suppress isolated noise pixels. Apart from noise, a single
object may break into two or more fragments. These frag-
ments need to be grouped together. The reason for this frag-
mentation is as follows. Consider Fig. 6 showing the output
of detector number 26 in response to a human followed by a
horse. As the human enters the FOV of the sensor, a large
downward swing is observed at the output of the detector
and a large upward swing is observed when the human
leaves the FOV of the sensor, forming a bipolar pair. The
bipolar pair is also observed at the output of the sensor in
response to the horse but due to the larger width of the
horse, the downward and upward swings have more separa-
tion in time. This signal behavior is linked to the discussion
in Sec. 2.2 about detector characteristics. This property of
the detector suppresses static objects in the background
and only responds to the moving targets. However, if a target
does not show variations in sections of its body, then the
detectors do not respond. This can lead to fragmentation
of an object. To overcome this problem, the pyroelectric
detector response characteristics can be used. The regrouping
of the fragments is done by tracking the bipolar swings that
mark the entry and exit of the target in the FOVof the sensor.
Following the grouping of objects, the images are processed
for gray scale feature extraction. The image can also be
binarized with segmented targets set to logic 1 and back-
ground set to logic 0 so as to extract binary features. This

process is described in Fig. 7. The process of gray scale
and binary feature extraction is discussed in Sec. 4.2.

4 Object Recognition
Once the presence of a potential target has been established
through the process described in Sec. 3, the next step is to
categorize the object as a human or an animal. This is a two
step process. In the first step, signal characteristics or fea-
tures are extracted from the object signal. In the second
step, the extracted features are processed by classification
algorithms. Two types of features were extracted, namely,
the height-to-width ratio and energy in frequency bands at
the output of Gabor filters. The features are then processed
by a classification algorithm to determine whether a test
object is human or animal. The classification algorithms
include logistic regression, decision trees, and Gaussian
mixture models (GMMs). The following combinations of
features extraction techniques and classification algorithms
were applied.

• Decision tree based classification algorithm which uses
both the height-to-width ratio and the Gabor features.

• Logistic regression using height-to-width ratio.
• GMM based classifier using height-to-width ratio.

In the following section, first the feature extraction tech-
niques are presented followed by a discussion about the three
classification algorithms.

4.1 Height-Width Feature Extraction

The motivation behind measuring height and width of
objects for the problem of interest is that the height of a
human is much greater than his/her width, while the differ-
ence between the height and width of an animal, walking at
slow speeds, is comparatively smaller. These two features are
measured from the binary image of an object. Height is mea-
sured as the largest dimension of the object along the vertical
direction. This is done by identifying the row in the image
where the first occurrence of “ON” pixels takes place and the
row where the last set of “ON” occur. Difference between
the row numbers is used as the measure of height. Similarly,
to measure width, the column in the image where the first

Fig. 5 Output of the 128 detectors versus time showing a human
followed by a miniature cow.
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Fig. 6 Output of PLA sensor detector number 26 in response to
a human followed by a horse.

Fig. 7 PLA sensor signal processing.
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occurrence of “ON” pixels takes place and the column where
the last set of “ON” occur are identified. Difference between
the column numbers is used as the measure of width.
Figure 8 shows an example of the height-width feature of
a human and a large horse. Although this feature has
been shown to be very effective in discriminating humans
from animals, it is not perfect. Since the sensor array is
sampled at regular time intervals, the faster an object
moves the more compressed it becomes in the horizontal
direction. As a result, fast moving animals can have
height-width features that are similar to humans. This prob-
lem is addressed in Sec. 4.3.3.

4.2 Gabor Feature Extraction

Gabor filters have been extensively used to discriminate
objects based on texture.14 Figure 9 shows an example of
a human and a running animal with similar height-
to-width ratio but different gray scale textures. To exploit
textural difference between humans and animals for classi-
fication, each object in gray scale is filtered by a bank of
Log-Gabor filters and the energy at the output of the filters
computed. The energy values are used as features of the
object and these features are processed by classifier to iden-
tify if the object is an animal or a human. Log-Gabor filter, a
variation of the standard Gabor filter, is given by the product
of its radial and angular components as shown in

Gðf; θÞ ¼ exp

8<
:
h
− log

�
f
f0

�i
2

2σ2f

9=
; exp

8<
:−

ðθ − θ0Þ2
2σ2θ

9=
;; (3)

where f0 is the radial center frequency and θ0 is the orien-
tation of the filter. The parameters σf controls the scale band-
width and σθ controls the angular bandwidth of the filter.

15,16

A total of 24 Log-Gabor filters, corresponding to six ori-
entations and four frequencies, were used with σf ¼ 0.65
and σθ ¼ 1.5.17 The orientation angles used are 0, 30, 60,
90, 120, and 150 deg. The highest frequency of the filter
bank is chosen so that it is less than the normalized
Nyquist frequency. The energy content in each of the 24
band pass images of an object is measured.18 This is done
by squaring each pixel, summing them, and then finally
dividing this sum by the total number of pixels in the
band pass image.19 A total of 24 features, which measure
frequency content of the object in the corresponding 2-D
spatial frequency bands, are extracted for each object.

4.3 Classification Algorithms

Three classification algorithms were tested for their ability to
use the features extracted from an object to classify them as
human or animal. Three supervised learning algorithms were
implemented in MATLAB. In supervised learning, the data
set is partitioned into a training set that is used to learn
parameters of the classifier model and a testing set that is
used to evaluate the performance of the classifier. Logistic
regression, GMM, and decision tree using Mahalanobis dis-
tance based classification algorithms were tested for classi-
fication accuracy. It should be noted that during the training
phase, estimation of the parameters of the GMM requires the
use of expectation maximization (EM). The EM algorithm is
computationally intensive. However, for the application of
interest, when the system will actually be deployed in the
field, the training will be done offline. Once the mixture
parameters are estimated, the calculation of posterior prob-
ability using GMM, which is not computationally challeng-
ing, can be done online. These statements on the difference
between computational cost during training and testing are
also valid for Mahalanobis distance and logistic regression
as well.

4.3.1 Logistic regression

In this research, a variation of the linear regression technique,
referred to as the logistic regression, is used to predict the

Fig. 8 Height and width measurements of a human and an animal.

Fig. 9 Sample of images of human and running animal showing gray
scale texture difference between the objects.
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class y given the target feature vector x ¼ ½x1; x2; : : : ; xn�.
Here, n is the number of features used to represent a target.
Logistic regression provides a probabilistic interpretation to
the prediction, y, by limiting it between 0 and 1.20 The rela-
tionship between the predicted class y and the target features
x ¼ ½x1; x2; : : : xn� is given by the logit function as shown in

y ¼ hðβTxÞ ¼ 1

1þ e−ðβ0þβ1x1þβ2x2þ · · · βnxnÞ : (4)

The task, here, is to estimate the weighting coefficients
β ¼ ½β1; β2; : : : ; βn� using features from targets in the train-
ing set. The coefficients, β, can be estimated using tech-
niques such as gradient descent that minimizes the cost
function given by21

JðβÞ ¼ −
1

ðmþ pÞ
Xmþp

i¼1

f−yi ln½hðβTxiÞ�

− ð1 − yiÞ ln½1 − hðβTxiÞ�g

þ λ

2ðmþ pÞ
Xn
j¼1

βj: (5)

In Eq. (5), xi and yi correspond to the feature vector and
training label of the i’th target in the training set, βj corre-
sponds to the coefficients of the j’th feature,m represents the
number of targets in the human training set, p represents the
number of targets in animal training set, and λ is the regu-
larization factor. The training label yi can be set to 0 for ani-
mal class and 1 for the human class.

In implementing the gradient descent algorithm, the fol-
lowing equations are used to compute the gradient of the cost
function with respect to βj: for j > 0,

∂JðβÞ
∂βj

¼
�

1

ðmþ pÞ
Xmþp

i¼1

½hðβTxÞ − yi�xij
�
þ λ

ðmþ pÞ βj

(6)

for j ¼ 0,

∂JðβÞ
∂βj

¼
�

1

ðmþ pÞ
Xmþp

i¼1

½hðβTxÞ − yi�xij
�
: (7)

Once β has been estimated, the value of y can be predicted
for the class of a test target using Eq. (4). If the predicted
value of y for a test target is >0.5, the target is assigned
to the human class, else the target is assigned to the animal
class.

4.3.2 Gaussian mixture model

Finite mixture models (FMM)22 can be used to represent the
distribution of a random variable X as a weighted sum of
a finite number of constituent distributions as shown in

pðXjΘÞ ¼
XK
k¼1

wkpkðXjθkÞ; (8)

where K represents the total number of constituent distribu-
tions forming the mixture, X represents the random variable

(features in this case), pðXjΘÞ represents the finite mixture,
pkðXjθkÞ represents the k’th constituent distribution, and wk
and θk represent the mixing coefficient and the parameters of
the k’th constituent distribution.

GMM is a specific case of FMM where all the constituent
distributions are Gaussian distributed. In this research,
GMMs are used to represent the probabilistic distribution
of features of the two classes. One GMM is used to
model the features of the human class and another is used
to model the features of the animal class. Modeling the fea-
tures using GMM requires the estimation of wk and θk.
EM technique is used to estimate the GMM using features
extracted from the training set.23 After the GMMs have been
estimated for each class, the classification of a test target
is done as follows. The posterior probability of a target is
computed using the GMMs for each class based on target
features. The target is assigned to the class for which the
target has highest posterior probability.

The following describes the EM technique of estimating
the GMM for a particular class. The EM algorithm is an
iterative technique. The steps below describe the t’th itera-
tion for a particular class. In Eq. (9), xi is the feature
vector associated with i’th target in the training set in a par-
ticular class. N is the number of training targets for the class
under consideration. First, a value of K ¼ 1 is picked. The
choice of K ¼ 1 creates a GMM with only one constituent
distribution, which is same as a conventional Gaussian
distribution.

Step 1: The posteriori probability of the k’th constituent
distribution given the i’th data sample is computed using
Bayes’ rule

Pðθk;njxiÞ ¼
Pðθk;tÞPðxijθk;tÞ

PðxiÞ ¼ wk;nPðxijθk;tÞP
K
k¼1 wk;nPðxijθk;tÞ

: (9)

Step 2: Mixing coefficient of the k’th constituent distri-
bution is calculated for the use in the ðtþ 1Þ’th iteration
is calculated using

wk;tþ1 ¼ Pðθk;tÞ ¼
1

N

XN
i¼1

Pðθk;tjxiÞ: (10)

The parameters of the k’th constituent distribution, θk;nþ1,
for the ðnþ 1Þ’th iteration are obtained by solving the

XN
i¼1

PðθtkjxiÞ
∂½Pðxijθtþ1

k Þ�
∂θ

¼ 0: (11)

The above two steps are repeated iteratively until param-
eters of the model converge. This process of estimating
GMMs is repeated by K. To determine the value of K
that best represents the data, the model selection Akaike’s
Information Criterion (AIC) is used. Given a set of models
under evaluation, the AIC metric value can be used to iden-
tify the best model for the data.24 In this case, each model
under evaluation is an FMM with a particular value of K
and the model with the lowest AIC value is chosen. AIC
is given by

AIC ¼ −2 ln½Pðxjθ̂Þ� þ 2Q; (12)
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where θ̂ are the estimated parameters of the model and Q is
the number of parameters of the statistical model. The AIC
equation is composed of two parts, the negative log-likeli-
hood that measures how well the model under test fits
the data and the number of parameters which penalizes a
model for over fitting. AIC selected K ¼ 2 for both the
GMMmodeling the animal class and the GMM representing
the human class.

4.3.3 Decision tree

The idea behind using a decision tree for classifying humans
and animals is as follows. Analysis of the data indicates that
the geometric feature based on height-to-width ratio is very
effective in classifying walking and running humans against
walking animals. The feature, in some cases, is not effective
in classifying humans against running animals, since the
height-to-width ratio of humans and running animals can
be similar. To address this issue, the two class problems are
split into a three class problems: humans, animals, and run-
ning animals. A decision tree with two nodes is employed as
shown in Fig. 10. At the first node, humans and animals are
classified using the height-to-width ratio. At this node, if
the classifier labels the test object as an animal, no further
processing is done. However, if the classifier labels the object
as a human at this node, then Gabor features are extracted
from the object and the decision making process is trans-
ferred to the second node. The classifier at this node,
based on the Gabor features, classifies the object as either
humans or running animals.

At each node of the tree, the decision of which path to
traverse is determined by the Mahalanobis distance classifier.
The Mahalanobis distance is a statistical measure of how far

a test sample is, with respect to a particular class described by
its class mean and class covariance. If Xt represents feature
vector of a test target, then the Mahalanobis distance between
the test sample and the i’th class is given by25

Di ¼ ðXt − μiÞC−1
Xi ðXt − μiÞT; (13)

where μi and CXi are the mean vector and covariance matrix
of the i’th class, respectively. These parameters are estimated
from the training samples of the i‘th class. The test sample Xt
is assigned to the class with the lowest Mahalanobis dis-
tance value.

5 Results
A total of 315 human profiles and 182 animal signatures
were collected using the pyroelectric sensor at two locations:
near the U.S.-Mexico border in Arizona (ArzData) and at a
petting zoo near Memphis (PzData). The number of samples
at each location for the three data collection sites is shown in
Table 2. In a seminal paper comparing accuracy estimation
techniques, Kohavi showed that stratified K-fold cross-
validation with K ¼ 10 is an extremely effective tool for
accuracy estimation.26 This technique is used in this paper
to evaluate the classification performance of the system.
In this approach, the total data set was partitioned into
10-folds. Each fold contained randomly chosen data points
from each of the data collection sites. In each fold, the per-
centage of members from the two classes is made equal to
that of the overall data set. The classification rate is com-
puted by holding out one group for testing while the rest
of the nine groups is used for training the classifiers. This
process is repeated over all the groups and the classification
rates are averaged to compute the overall classification rate.

The feature extraction and classification algorithms
described in Sec. 4 were applied to the data. Classification
rates are shown in Table 3. It is observed that the decision
tree approach that uses both the height-to-width ratio feature

Fig. 10 Object recognition algorithm using decision tree for classify-
ing humans against animals.

Table 2 Number of data samples collected using pyroelectric sensor
at various sites.

ArzData location 1 ArzData location 2 PzData

Human signatures 140 145 41

Animal signatures 73 84 41

Table 3 Comparison of classification rates.

Feature extraction Classifier
Classification

rate (%)

Height-to-width ratio and
Gabor features

Decision tree 94

Height and width Logistic regression 87

Height-to-width ratio GMM 84

Gabor features Mahalanobis
distance

72
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and the gabor texture feature achieves the highest classifica-
tion rate of 94%. Logistic regression using the height-to-
width ratio provides a classification accuracy of over 87%
and GMM classifier using height-to-width ratio classifies
objects with an accuracy of over 84%. The Mahalanobis dis-
tance classifying based on the Gabor features has a classifi-
cation rate of over 72%. Table 4 shows the confusion matrix
for the decision tree-based approach. The main cause of error
was the incorrect grouping of fragments of objects during the
object detection phase. There were a total of 16 running ani-
mals in the data set. The decision tree approach that uses both
height-to-width ratio and Gabor features to achieve speed
independence, classifies the running animals at a rate of
98%. The use of dimensionality reduction techniques such
as linear discriminant analysis27 only provided marginal
improvement in the classification accuracy. Algorithmic
implementation of wavelet packet-based feature extraction
was also done,28 however, its classification performance
was significantly lower and its results are not reported here.

Another technique of measuring classification accuracy is
to separate the training and testing data based on data
collection sites. In this performance measurement, in one
round, the Arizona site is used to provide the training sam-
ples and the petting zoo data are used for testing. In the next
round, the petting zoo data are used as training samples and
the Arizona site data are used for testing. The results of the
two rounds are then averaged to compute the overall perfor-
mance. In this type of performance measurement, the highest
classification rate of 71% was obtained using the decision
tree classifier. To understand the reason for lower perfor-
mance, in comparison to the k-fold cross-validation tech-
nique, the classifier boundaries in the feature space were
analyzed. It was noticed that the classifier boundaries deter-
mined based on one site did not provide good partitioning of
data for the classes of the other sites. The animal features
from the Arizona site had significant differences from the
features of animals of the petting zoo site. This issue
could be attributed to the fact that the category of animals
in the Arizona site was very different from those in the pet-
ting zoos. Due to the lack of diversity in the individual data
sites, the classifier models over fitted during training and per-
formed poorly during testing. In comparison, the better per-
formance under the K-fold based evaluation is because the
K-fold data partitioning provided for a good diversity in the
training set. This allowed for the classifier models to general-
ize and hence provided high classification rates of over 94%.
However, the lower performance in the site based evaluation
is acknowledged and this research, as a result claims only
limited insensitivity instead of invariance to range and
speed. Further, the results indicate that more robust features
are needed to address this issue. Increasing the temporal and
sampling capabilities of the sensor can also alleviate the
problem. It should be noted that the sensor is a proof of

concept system and these issues are to be addressed in future
research on this topic.

6 Conclusions
This paper presents a proof of concept sensor system that
uses a linear array of pyroelectric detectors for moving object
recognition. The response of the detectors inherently sup-
presses the static background and only responds to moving
objects in the image. The use of this system in trail monitor-
ing is demonstrated by its ability to distinguish between
humans and animals when object motion is transverse to
the FOV of the sensor. This system can be used as a cost-
effective alternative to conventional 2-D focal plane array
sensors that use detectors such as microbolometers. A data
collection effort was undertaken near the U.S.-Mexico bor-
der and at a petting zoo to acquire signatures of humans and
a variety of animals. Simple noise mitigation, object detec-
tion, feature extraction, and classification are applied for
discriminating the two classes of interest. Various object
features and classification algorithms are compared based
on their ability to accurately classify objects. Using K-fold
cross-validation, it is demonstrated that a decision tree based
classifier that uses a combination of geometric characteristics
and texture features can be used to discriminate between
humans and animals with high classification rates. Several
tasks are foreseen in the future to make the system more
practical and accurate for field deployment. This includes
implementing the software on low resource computing
platforms for real-time performance and incorporating this
system into a multimodal sensor network. To improve accu-
racy, it is hypothesized that fusion of features from the PLA
sensor with sensors such as acoustic and seismic sensors will
further increase the discrimination rates. A sensor employing
a two column arraies is currently being developed. The time
of appearance of an object in each of the columns can be
used to estimate the speed of the objects. With the speed esti-
mated in using the two column approaches, a speed normal-
ized height-to-width ratio can then be used for classifying
targets, which computational is less intensive than using
a combination of Gabor features and conventional height-
to-width ratio. Further, a more sensitive detector array is
being used for the development of a long range PLA with
the ability to discriminate well beyond the 30 m range
limit of the current PLA system. This long range PLA system
will provide greater sensor to object stand off distance thus
expanding the utility of the sensor beyond trail monitoring
into other tactical and military applications. The higher sen-
sitivity detector system can reduce the fragmentation effect
at the sensor output that has also been a source of classifi-
cation errors.
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