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1 Introduction
The standard theory for modeling atmospheric turbulence
impacts in systems performance models1–3 has been Fried’s4
short-exposure atmospheric modulation transfer function
(MTF). Reanalysis of Fried’s approach has shown that
when diffraction influences on the phase structure function
are included,5 the tilt-phase (TP) correlation term is numeri-
cally evaluated,6 and path-dependent turbulence strength var-
iations are considered.7 However, like the original Fried
work, only circular aperture geometries have been consid-
ered. This omits a significant class of telescope optics involv-
ing a central obscuration produced by reflector optics’
circularly symmetric secondary mirror. The current paper
summarizes efforts to close that gap.

The closest parallel works in the area of optical turbulence
effects on annular aperture systems appear to be limited.8,9

However, these primarily considered the modeling of
phase perturbation terms and not the full short-exposure
MTF.

The extension of the theory to incorporate this additional
effect involves the introduction of a free parameter, here
designated as C, the ratio of the inner obscuration diameter,
D1, to the outer system aperture diameter, D2, such that
0 ≤ C < 1. The limit C ¼ 0 corresponds to the circular
solution.

The revised theory is addressed in general in Sec. 2.
Thereafter, individual components of the calculation are con-
sidered separately, including the revised system MTF, the
tilt-variance calculation, and the TP correlation calculation
technique.

2 Short-Exposure Turbulence Modulation
Transfer Function

The short-exposure turbulence MTF (SEMTF), based on
Fried’s approach, evaluates the impact of statistically

averaged phase and amplitude fluctuations on image quality
produced by an optical system. The statistics of the turbu-
lence field is characterized by the wave and phase structure
functions, denoted by DðrÞ and DϕðrÞ, respectively. To gen-
erate averaged tilt-removed effects, the angle-of-arrival linear
phase is mathematically removed. The linear tilt effects are
deemed to shift the position of the centroid of the arriving
pattern of photons but to not affect image quality. Only
the remaining higher order phase and amplitude perturba-
tions produce blur, resulting in MTF degradation.

The engine for the calculations performed involves the
Rytov approximation’s (RA) single-scattering model. This
method was compared to the reportedly more robust method
of Charnotskii10 in Ref. 6. That paper also discussed limits of
the RA based on Dashen’s criteria.11 However, here, for
completeness, this discussion will be continued in Sec. 6.

2.1 Dimensionless Variables Used

The general optical problem encountered is illustrated in
Fig. 1. An extended source object plane to be imaged is
positioned at z ¼ −L. The signal emitted is an incoherent
light source consisting of uncorrelated photons, some of
which pass through the receiver aperture entrance pupil
at z ¼ 0. The aperture consists of an annular ring whose
maximum diameter is D2 and whose inner obscuration
diameter is D1. The light studied is monochromatic with
wavelength λ and wavenumber k ¼ 2π∕λ, and it passes
through an atmosphere characterized by turbulence strength
parameter C2

n (m−2∕3) that in this paper is independent of
path position.

From these variables, we can define a set of dimensionless
variables that parameterize the optical problem. First, C ¼
D1∕D2 characterizes the aperture geometry. Second, Q ¼
D2∕ðλLÞ1∕2 ¼ D2∕F parameterizes diffraction influences,
where F is the Fresnel zone. Third, X ¼ D2∕ro character-
izes the turbulence strength, where ro is Fried’s coherence
diameter, ro ¼ 3.018ðk2LC2

nÞ−3∕5. To avoid the ubiquitous
2.1 factor, variables ρo ¼ ro∕2.1 (the coherence length) and
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S ¼ D2∕ρo will also be used. This model ignores inner-
and outer-scale of turbulence effects, whose impacts are
minimal for incoherent imaging problems due to the mit-
igating factors of aperture averaging on the inner scale and
aperture size (D2 < Lo) on the outer scale. Impacts of path-
varying turbulence were considered in Ref. 7.

The final governing variable is the dimensionless angular
frequency ω, expressed in radians of frequency per radian of
angle: Given a system aperture of outer diameter D2 and
wavelength λ, the maximum angular frequency is denoted
Ωo ¼ D2∕λ. This is the upper limit of variable Ω ¼ Rf
developed by Goodman12 to aggregate the effects of the
system focal length R and spatial frequency f in the system’s
image plane. Here, Goodman’s Ω∕Ω0 is further reduced
to the dimensionless frequency ω ¼ Ω∕Ωo, with limits
0 ≤ ω ≤ 1.

2.2 Wave and Phase Structure Functions

Let us next consider the form of the integrated wave and
phase structure functions, given in terms of the above dimen-
sionless parameters that describe the aggregate atmospheric
turbulence properties. These functions were expressed in
integral form for spherical wave propagation by Lawrence
and Strohbehn13

EQ-TARGET;temp:intralink-;e001;63;335DðvÞ ¼ DlðvÞ þDϕðvÞ

¼ 8π2k2L
Z

1

0

dc
Z

∞

0

dκκΦnðκÞ½1 − J0ðκcvÞ�; (1)

for the wave structure function, and
EQ-TARGET;temp:intralink-;e002;63;263

DϕðvÞ ¼ 8π2k2L
Z

1

0

dc
Z

∞

0

dκκΦnðκÞ ½1 − J0ðκcvÞ�cos2

×
�
κ2

c − c2

ð2k∕LÞ
�
; (2)

for the phase structure function. Here, l is a log-amplitude
perturbation and ϕ is a phase perturbation at the system
entrance pupil. J0ðxÞ is the Bessel function of the first
kind, order zero, and c ¼ ðLþ zÞ∕L is a dimensionless
path position, equal to zero at the object plane (z ¼ −L)
and unity at the system aperture (z ¼ 0). The structure func-
tions represent expectations of squared differences, e.g.,
DϕðvÞ ¼ h½ϕðxÞ − ϕðxþ vÞ�2i.

The factor ΦnðκÞ is the refractive index power spectrum.
In this analysis, a Kolmogorov spectrum is considered such
that ΦnðκÞ ¼ βC2

nðzÞκ−11∕3, where β ≈ 0.033 and κ (m−1) is
the spatial frequency of atmospheric turbulence fluctuations.

Use of the Kolmogorov spectrum implies that the turbulence
structure is homogeneous and isotropic. Note that the Bessel
function terms involving J0 produce a low frequency cutoff
that further restricts outer scale influences.

The v variable in Eqs. (1) and (2) denotes a distance of
spatial separation in a transverse plane between two obser-
vation points. In its truest sense, this variable must be treated
as a vector quantity, but due to the choice of the isotropic/
homogeneous Kolmogorov spectrum it loses its directional
dependence. Hereafter, v will be a transverse distance mea-
sured in the system entrance pupil. In this case, it is also
common to normalize v as a dimensionless variable (e.g.,
u ¼ v∕D2) such that the above integrals can be reduced
to the forms:5

EQ-TARGET;temp:intralink-;e003;326;598Dðv; ρoÞ ¼ DðD2u; S ¼ D2∕ρoÞ ¼ 2ðv∕ρoÞ5∕3
¼ ½2ðSuÞ5∕3� ¼ JðSuÞ; (3)

and
EQ-TARGET;temp:intralink-;e004;326;537

Dϕðv; F; ρoÞ ¼ JðSuÞαðQuÞ ¼ JðS∕QÞ½ðQuÞ5∕3αðQuÞ�
¼ JðS∕QÞYðQuÞ: (4)

Here, αðxÞ is a transitional function that varies between
1/2 at x ¼ 10−8, ∼3∕4 at x ¼ 10−1, and ∼1 beyond about
x ¼ 10 (e.g., Fig. 1 of Ref. 5). In the numerical processing
performed, this function is tabulated and interpolated as nec-
essary. Also, JðxÞ encapsulates the behavior of the wave
structure function, while YðxÞ separates the u dependence
of the phase structure function from the S dependence.
This separation will be critical in Sec. 4’s TP analysis.

The final form on the right side of Eq. (4) emphasizes that
the turbulence-related S factor’s influence has been
decoupled from the u dependence in YðQuÞ. This will
allow turbulence-related effects to be factored out of the inte-
gral in Eq. (50) of Sec. 4.

2.3 Short-Exposure Turbulence Modulation Transfer
Function Decomposition

Given these preliminaries, the SEMTF can now be evaluated.
In its compact form, the integral expression defining this
function is given as4,5

EQ-TARGET;temp:intralink-;e005;326;278

MSðωÞ¼
1

A

Z
dvWðvÞWðv−D2ωÞ×hexpflðvÞþlðv−D2ωÞgi

×hexpfi½ψðvÞ−ψðv−D2ωÞ�gi; (5)

where A ¼ πD2
2ð1 − C2Þ∕4 is the area of the system entrance

pupil,WðvÞ are window functions over this pupil, considered
as binary functions (0 or 1), lðvÞ is a propagated amplitude
perturbation, and ψðvÞ is a tilt-corrected phase perturbation.
The wavefront tilt over the aperture is characterized by a,
such that the tilt-corrected phase function in the system aper-
ture can be expressed as ψðvÞ ¼ ϕðvÞ − a · v. Fried4 showed
in detail that l and ψ are independent random variables.
Angle brackets are used to denote the expectation operator
used to create the statistics for the net mean SEMTF.

The factor A imposes a normalization on the SEMTF
integral: At zero frequency, ω ¼ 0, we find that

L R

D2 v x

Object
plane

Image
plane

Entrance
pupil

Fig. 1 Imaging geometry of the short-exposure imaging problem
where optical turbulence fluctuations exist between the object
plane and the system entrance pupil.
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EQ-TARGET;temp:intralink-;e006;63;752MSð0Þ ¼
1

A

Z
dvW2ðvÞ ¼ 1: (6)

This result also necessarily assumes hexpð2lÞi ¼ 1 [see,
e.g., Equation (20) of Ref. 5. The principal difference
between the short- and long-exposure imaging problems
is the presence of ψ that replaces ϕ from the long-exposure
case. The key element of the analysis of the SEMTF then
reduces to the analysis of the expectation functions in
Eq. (5). First, note that due to turbulence homogeneity,
the relative starting point of these functions is indeterminate.
Hence

EQ-TARGET;temp:intralink-;e007;63;619hexpflðvÞ þ lðv −D2ωÞgi ≡ hexpflð0Þ þ lð−D2ωÞgi:
(7)

Also, because the turbulence is isotropic, the resulting functions
will only dependonmagnitudeDω.We further definevariables
χðuÞ ¼ lð0Þ þ lðD2uÞ and ζðuÞ ¼ ψð0Þ − ψðD2uÞ. Prior
analysis4 showed that Eq. (5)’s expectations are expressible
in terms of amplitude and tilt-corrected phase structure func-
tions as

EQ-TARGET;temp:intralink-;e008;63;509hexpðχ þ iζÞi ¼ expf−DlðvÞ∕2 −DψðvÞ∕2g: (8)

Variables χ and ζ are both Gaussian random variates that are
independent of one another. Variable ζ is also a zero-mean
quantity.

The annular aperture window function WðvÞ can be con-
structed from a pair of functions Woðv∕DÞ ¼ Cylðv∕DÞ as
EQ-TARGET;temp:intralink-;e009;63;422Wðv∕D2; CÞ ¼ Woðv∕D2Þ −Wo½ðv∕D2Þ∕C�; (9)

where CylðrÞ ¼ 1, if r < 1∕2 and zero when r ≥ 1∕2. The
open portion of the aperture integrates to A ¼
πD2ð1 − C2Þ∕4. A normalized aperture (D2 ¼ 1) produces
a normalized area Â ¼ πð1 − C2Þ∕4.

Seemingly, the remaining step is to numerically evaluate
the integrals with DlðvÞ and DψðvÞ. However, upon decom-
posing DψðD2ωÞ, we find three terms
EQ-TARGET;temp:intralink-;e010;63;314

DψðD2ωÞ ¼ h½ψðvÞ − ψðv −D2ωÞ�2i
¼ hf½ϕðvÞ − a · v� − ½ϕðv −D2ωÞ − a · ðv −D2ωÞ�g2i
¼ h½ϕðvÞ − ϕðv −D2ωÞ�2i þ h½a · ðD2ωÞ�2i
− 2h½ϕðvÞ − ϕðv −D2ωÞ�½a · ðD2ωÞ�i: (10)

To assess these components, note that the first term on the
right is just the phase structure function, DϕðD2ωÞ.
Combining this term with the amplitude structure function
of Eq. (8) yields a wave structure function. This combined
term represents the long-exposure atmospheric turbulence
MTF kernel. The remaining terms correspond to the short-
exposure corrections. The first of these extra terms (center
term on the right) is due to the tilt-variance. However, this
term is positive in Eq. (10), which turns negative in Eq. (8),
resulting in an overall degradation influence. Therefore, it is
the final term on the right in Eq. (10), designated here as the
TP correlation, that supplies the counteracting short-expo-
sure correction to long-exposure turbulent blur.

The remaining task involves evaluating these remaining
two terms, as well as assessing the net system MTF, defined

asM0ðωÞ. To facilitate these computations, let us introduce a
centered geometry

EQ-TARGET;temp:intralink-;e011;326;730

MSðωÞ ¼
1

A

Z
dvWðv∕D2 þ ω∕2; CÞWðv∕D2 − ω∕2; CÞ

× expf−DðD2ωÞ∕2 − TVþ TPg; (11)

where TV is the tilt-variance term and TP is the tilt-phase
correlation effect.

In the limit of negligible turbulence, the exponential term
in Eq. (11) approaches unity, leaving the system MTF,
M0ðω; CÞ, involving the integral of two shifted Eq. (9)
window functions. The shifted overlapping windows are
illustrated in Fig. 2. The frequency ω becomes the shift mag-
nitude in the normalized aperture picture (D2 becomes 1/2).

Function M0 appears in integral form as
EQ-TARGET;temp:intralink-;e012;326;571

M0ðω; CÞ ¼ Ã−1
Z

dufWo½uþ ω∕2� −Wo½ðuþ ω∕2Þ∕C�g

× fWo½u − ω∕2� −Wo½ðu − ω∕2Þ∕C�g; (12)

where u ¼ v∕D2. To evaluate this integral, one must simply
evaluate the areas of the two outer overlapping circles (the
sum of areas S1 through S10) plus the overlapping inner
circles (areas S3 and S4), then subtract off twice the overlap
between an inner and an outer circle (e.g., areas S1 through
S4). To evaluate these areas, consider a circle of radius
R centered on the origin and integrated from x ¼ p
(−R ≤ p ≤ R) through x ¼ R. Let us write this result as

EQ-TARGET;temp:intralink-;e013;326;423Ũðp; RÞ ¼
Z

R

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
dx

¼ R2½cos−1ðp∕RÞ − ðp∕RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðp∕RÞ2

q
�

¼ R2Uðp∕RÞ; (13)

where −R ≤ p ≤ þR. Using this result, for the overlapping
outer circles, the net area is

B C
A

D

Fig. 2 Intersection of annular apertures displaced center-to-center
from one another by amount ω of unit outer diameter and inner
diameter C ¼ 9∕14. Subregions are labeled as S1 through S10.
Cross marks center of coordinate system (origin of v vector space).
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EQ-TARGET;temp:intralink-;e014;63;752S1 þ : : : þ S10 ¼ 2ð1∕2Þ2U½ðω∕2Þ∕ð1∕2Þ� ¼ UðωÞ∕2:
(14)

The corresponding overlapping inner circle area is

EQ-TARGET;temp:intralink-;e015;63;709S3 þ S4 ¼ 2ðC∕2Þ2U½ðω∕2Þ∕ðC∕2Þ� ¼ C2Uðω∕CÞ∕2;
(15)

(assuming an overlap exists).
The overlap between inner and outer circles is also evalu-

ated using the U function but requires that arguments l1 and
l2 be determined. From Fig. 2, if rightward-directed arrows
are considered positive valued, leftward arrows as negative
valued, and ω as positive, then

EQ-TARGET;temp:intralink-;e016;63;592l1 þ l2 ¼ ω: (16)

To evaluate l1 and l2, we also note that right triangles
A-B-D and A-C-D share the common side of length h.
Side B-D is C∕2 long and side C-D is 1/2 long, leading
to the following equations:

EQ-TARGET;temp:intralink-;e017;63;517l2
1 þ h2 ¼ ðC∕2Þ2 and l2

2 þ h2 ¼ ð1∕2Þ2: (17)

Subtracting these equations and using symbol e ¼
eðCÞ ¼ ð1 − C2Þ∕4
EQ-TARGET;temp:intralink-;e018;63;463l2
2 − l2

1 ¼ e: (18)

Equation (16) can be used to eliminate either l1 or l2 from
Eq. (18), resulting in
EQ-TARGET;temp:intralink-;e019;63;409

l1∕R1 ¼ K1ðω; CÞ ¼ ðω2 − eÞ∕ðCωÞ;
l2∕R2 ¼ K2ðω; CÞ ¼ ðω2 þ eÞ∕ω: (19)

These results are directly comparable to the approach of
Figs. 9–4 of Ref. 14. These expressions are just the argu-
ments of the related U functions needed to evaluate these
areas. Doubling the size of a single inner-outer overlapped
area to account for S1-S4 plus S3-S6, produces the result
EQ-TARGET;temp:intralink-;e020;63;304

SI∕Oðω; CÞ ¼
�
U½K2ðω; CÞ� þ C2U½K1ðω; CÞ�

2

�

×
�
Cyl

�
ω

1þ C

�
− Cyl

�
ω

1 − C

��
: (20)

Cylinder functions were added to handle the windowing
of the function components. For shifts ω∕2 < 1 − C, the
doubled inner circles lie completely inside the outer circles,
whose net contributions are 2πC2∕4. Combining normalized
area terms and dividing by Â yields the complete system
MTF function, written as
EQ-TARGET;temp:intralink-;e021;63;164

M0ðω;CÞ¼G1ðω;CÞ

¼ 2∕π
ð1−C2Þ

�
UðωÞCyl

�
ω

2

�
þC2Uðω∕CÞCyl

�
ω

2C

��

−
4∕π

ð1−C2ÞSI∕Oðω;CÞ−
2C2

ð1−C2ÞCyl
�

ω

1−C

�
:

(21)

Various versions of this function for different choices of
parameter C are plotted in Fig. 3. While the basic function
is normalized such that M0ð0; CÞ ¼ 1, the curves plotted in
Fig. 3 have been multiplied by (1 − C2) to preserve a sense of
the relative entrance pupil in terms of its light-gathering
capacity.

The next two sections cover the calculation of the tilt-
variance (TV) term in Sec. 3 and the TP correlation term
in Sec. 4.

3 Annular Aperture Tilt-Variance Calculations
In this section, we consider the TV term in Eq. (11). In gen-
eral, the TV is found to be aperture geometry dependent, but
because the turbulence is assumed isotropic and the apertures
are circularly symmetric, the tilt statistics is also isotropic
(ha · ai ¼ ha2xi þ ha2yi ¼ 2ha2xi ¼ 2ha2yi). Components ax
and ay are also decorrelated (haxayi ¼ 0). Therefore, we
can write
EQ-TARGET;temp:intralink-;e022;326;328

TV ¼ 1

2
h½a · ðD2ωÞ�2i ¼

D2
2

2
ha2xω2

x þ 2axayωxωy þ a2yω2
yi

¼ ha · ai
4

ðD2
2ω

2Þ: (22)

It remains to evaluate ha · ai. To do so, accounting for
annular aperture influences, we return to an analysis of
Fried’s15 phase perturbation model. The instantaneous
phase perturbation function ϕðvÞ can be decomposed into
an infinite series of weighted orthonormal basis functions

EQ-TARGET;temp:intralink-;e023;326;208ϕðvÞ ¼
X∞
μ¼0

pμFμðvÞ: (23)

This expression may also be dissected in the form

EQ-TARGET;temp:intralink-;e024;326;147ϕðvÞ ¼
XN−1

μ¼0

pμFμðvÞ þ
X∞
μ¼N

pμFμðvÞ ¼ ΦNðvÞ þℋNðvÞ;

(24)

where the lower order terms are resolved and the higher order
remainder, ℋN , is unresolved.

Fig. 3 Unnormalized annular aperture system MTF curves for the
C ¼ D1∕D2 parameter ranging from 0.0 to 0.95.
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Fried ordered the Fμ basis functions such that the first few
would involve the piston (index 0), tip (1), and tilt (2) terms,
such that

EQ-TARGET;temp:intralink-;e025;63;719ϕðvÞ ¼ Φ3ðvÞ þℋ3ðvÞ;
where Φ3ðvÞ ¼ p0F0ðvÞ þ pxFxðvÞ þ pyFyðvÞ:

(25)

Also, Φ0 ¼ 0 (no expansion terms), such that ℋ0ðvÞ ¼
ϕðvÞ. In general, the total unresolved instantaneous phase
variance averaged over the system aperture can be evaluated
via the integral

EQ-TARGET;temp:intralink-;e026;63;625

Δ2
N ¼

Z
dv

WðjvjÞ
A

ℋ2
NðvÞ ¼

Z
dv

WðjvjÞ
A

½ϕðvÞ −ΦNðvÞ�2

¼
X∞
μ¼N

ðpμÞ2
A

: (26)

In incoherent imaging, once a photon appears on the sys-
tem image plane, knowledge of the mean phase is lost. Thus,
the lowest order measureable phase error is Δ2

1. Short-expo-
sure imaging further reduces the phase error by eliminating
tip and tilt effects since a centroid shift will not reduce point-
source image quality. Hence, we focus onΔ2

3. The difference,
Δ2

1 − Δ2
3 ¼ ðp2

x þ p2
yÞ∕A, is proportional to the TV.

Evaluating this difference involves calculating px and py
coefficients based on integrations using the Fj basis func-
tions. Fried required that these follow the normalization rule

EQ-TARGET;temp:intralink-;e027;63;437

Z
dxWðxÞFμðxÞFνðxÞ ¼

�
1; μ ¼ ν;
0; μ ≠ ν:

(27)

The piston, tip, and tilt terms are given by

EQ-TARGET;temp:intralink-;e028;63;382F0ðvÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðD2
2 −D2

1Þ∕4
p ¼ 1

A1∕2 ; (28)

EQ-TARGET;temp:intralink-;e029;63;337F1 ¼ FxðvÞ ¼ WTvx; F2 ¼ FyðvÞ ¼ WTvy; (29)

where WT ¼ 8∕½πD4
2ð1 − C4Þ�1∕2 has dimensions of inverse

area. These factors yield orthonormal annular functions (see,
e.g., Ref. 9) as opposed to Fried’s circular aperture factors.

The expansion coefficients pμ are then evaluated using

EQ-TARGET;temp:intralink-;e030;63;266pμ ¼
Z

dxWðjxjÞϕðxÞFμðxÞ: (30)

Dimensionally speaking, the pμ’s are the lengths, the Fμ’s
are the inverse lengths, and their products are dimension-
less. Fried’s4 a · v product was also dimensionless but used
lengths for v and inverse lengths for a, although their ana-
logs Fμ and pμ, respectively, were of opposing dimensional
senses. The tilt vector components aμ are therefore related
to quantities pμ as aμvμ ¼ pμFμ ¼ ðpμWTÞvmu, such that

EQ-TARGET;temp:intralink-;e031;63;146ha · ai ¼ hW2
Tðp2

x þ p2
yÞi ¼ W2

TAhðΔ2
1 − Δ2

3Þi: (31)

To evaluate Δ1
1 − Δ2

3, let us follow Fried’s development. We
first write this difference as

EQ-TARGET;temp:intralink-;e032;326;752Δ2
1 − Δ2

3 ¼ ðΔ2
0 − Δ2

3Þ − ðΔ2
0 − Δ2

1Þ: (32)

We then evaluate the two forms from Eq. (32) using the
pμ forms of Eqs. (30) in (26)

EQ-TARGET;temp:intralink-;e033;326;707

Δ2
0−Δ2

N¼
XN−1

μ¼0

p2
μ

A

¼1

A

XN−1

μ¼0

�Z
dxWðjxjÞϕðxÞFμðxÞ

��Z
dx0Wðjx0jÞϕðx0ÞFμðx0Þ

�

¼1

A

Z
dx0WðjxjÞ

"XN−1

μ¼0

Z
dx0Wðjx0jÞFμðxÞFμðx0Þ

#
ϕðxÞϕðx0Þ:

(33)

Now, let us introduce Fried’s15 “trick” involving the rewrit-
ing of Δ2

0 in a form resembling the bracketed final section of
Eq. (33). First,

EQ-TARGET;temp:intralink-;e034;326;530Δ2
0 ¼

X∞
μ¼0

p2
μ

A
¼

Z
dx

WðjxjÞ
A

ϕ2ðxÞ

¼
Z

dx
WðjxjÞ

A

�XN−1

μ¼0

Z
dx 0Wðjx 0jÞFμðxÞFμðx 0Þ

�
ϕ2ðxÞ:

(34)

The trick involves recognizing that the bracketed region
only produces a result for its F0ðxÞ term in Eq. (34). All other
components integrate to zero due to orthogonality. For the
zeroth component, the integral evaluates to A1∕2, which can-
cels with F0 ¼ A−1∕2.

Symmetrizing Eq. (34) into the form,

EQ-TARGET;temp:intralink-;e035;326;367

Δ2
0 ¼

Z
dx

WðjxjÞ
A

�XN−1

μ¼0

Z
dx 0Wðjx 0jÞFμðxÞFμðx 0Þ

�

×
�
ϕ2ðxÞ þ ϕ2ðx 0Þ

2

�
; (35)

Equations (33) and (35) can be combined to write
EQ-TARGET;temp:intralink-;e036;326;275

Δ2
N

¼
XN−1

μ¼0

Z
dxWðjxjÞ

2A

Z
dx0Wðjx0jÞFμðxÞFμðx0Þ½ϕðxÞ−ϕðx 0Þ�2:

(36)Taking the expectation of both sides

EQ-TARGET;temp:intralink-;e037;326;201

hΔ2
Ni¼

XN−1

μ¼0

Z
dx

WðjxjÞ
2A

Z
dx0Wðjx0jÞFμðxÞFμðx0ÞDϕðjx−x0jÞ:

(37)

Next, vectors x and x 0 are replaced by r ¼ x − x 0 and s ¼
ðxþ x 0Þ∕2, permitting Eq. (37) to be written as

EQ-TARGET;temp:intralink-;e038;326;111hΔ2
Ni ¼

π

A

Z
D2

0

FNðrÞDϕðrÞrdr; (38)
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using
EQ-TARGET;temp:intralink-;e039;63;741

FNðrÞ¼
Z

dsW
	


sþr

2




�W	


s−r
2




�XN−1

μ¼0

Fμ

	
sþr

2

�
Fμ

	
s−

r
2

�
:

(39)

Terms related to s can now be collected and integrated sep-
arately. Due to circular symmetry of the entrance pupil, the
resulting functions depend only on magnitude r ¼ jrj. From
this result, the tilt-variance becomes

EQ-TARGET;temp:intralink-;e040;63;634ha · ai ¼ D2
2W

2
T

Z
1

0

½G1ðu; CÞ − G3ðu; CÞ�DϕðD2uÞudu;
(40)

where the C parameter denotes the additional influence of
the central obscuration and the F μ functions involving
dimensional arguments v (m) have been converted to func-
tions Gμ featuring dimensionless spatial distances u ¼ r∕D2.

At this point, given available space, just the results of fur-
ther manipulations will be shown. Calculation details were
discussed in Ref. 16.

For the circular aperture case, the tilt-variance can be writ-
ten as

EQ-TARGET;temp:intralink-;e041;63;479ha · ai ¼ 2.0864JðSÞGðQÞ∕D2
2; (41)

where S measures the turbulence strength and GðQÞ gauges
the relative effects of diffraction through parameterQ involv-
ing the transition from 0.5 for Q < 1 to 1.0 for Q ≥ 2. It can
be expressed approximately using the below equation:
EQ-TARGET;temp:intralink-;e042;63;403

GðQÞ ¼ ΣPðq̂;þ0.908;þ0.361;þ0.092; 1.311;

þ 5.125;−0.201Þ; (42)

where q̂ ¼ log10ðQÞ and ΣP is a spliced sigmoid function:
Beginning with a standard sigmoidal function ΣðxÞ ¼
½expðxÞ − 1.0�∕½expðxÞ þ 1.0� that transitions between −1
and þ1 as x transitions from large negative values to
large positive values, a spliced form is constructed by joining
two separate rescaled sigmoid representations at a transition
point x ¼ D as
EQ-TARGET;temp:intralink-;e043;63;276

ΣPðx; A; B1; B2; C1; C2; DÞ

¼
�
Aþ B1Σ½C1ðx −DÞ�; x ≤ D;

Aþ B2Σ½C2ðx −DÞ�; x ≥ D:
(43)

By requiring B1C1 ¼ B2C2, both the value of the function
and its slope will be contiguous at x ¼ D. This function
approximates the curve plotted in Fig. 2 of Ref. 5. The cur-
rent form has been tailored for the range −2 < q̂ < þ2.

The GðQÞ function is parameterized such that it models
the main diffraction effects on the tilt-variance while the rel-
ative strength of the effect has been aggregated in the leading
constant.

The addition of the central obscuration modulates
Eq. (41) to the following form:

EQ-TARGET;temp:intralink-;e044;63;102ha · ai ¼ 2.0864
JðSÞ
D2

2

½W1ðCÞ −W3ðCÞ�
ð0.0375 − 0.0049Þ G̃ðQ;CÞ; (44)

introducing functions W1ðCÞ, W3ðCÞ, and G̃ðQ;CÞ. The
form of this equation is organized such that the constants
0.0375 and 0.0049 reflect the limiting behaviors of the G
functions as the influence of αðQuÞ on the phase structure
function Dϕ [Eq. (4)] approaches its limiting value of 1
for largeQ. TheW reflect generalizations of these constants,
given as
EQ-TARGET;temp:intralink-;e045;326;675

W1ðCÞ ¼
1

ð1 − C4Þ
Z

1

0

G1ðu; CÞu8∕3du

≈ 0.0375 − 0.0110C2.25 þ 0.0070C2.75; (45)

EQ-TARGET;temp:intralink-;e046;326;615

W3ðCÞ ¼
1

ð1 − C4Þ
Z

1

0

G3ðu; CÞu8∕3du

≈ 0.0049 − 0.0055C1.85 þ 0.0036C2.75: (46)

The third function, G̃ðQ;CÞ, has been similarly formu-
lated as GðQÞ so that it approaches a limiting value of
unity for large Q but also reflects the influences of C. It
can be expressed as a modulated version of the original
GðQÞ function
EQ-TARGET;temp:intralink-;e047;326;504

G̃ðQ;CÞ ¼
Z

1

0

½G1ðu; CÞ − G3ðu; CÞ�
ð1 − C4Þ½W1ðCÞ −W3ðCÞ�

u8∕3αðQuÞdu

≈ G½Q × 10þXAðCÞ�; (47)

using the function

EQ-TARGET;temp:intralink-;e048;326;431XAðCÞ ≈þ0.096C2.95: (48)

These functions all have relatively minimal impact [see,
e.g., Figs. 6 through 8 of Ref. 16], which is consistent with
the concept that tilt effects are dominated by low wavenum-
ber turbulence, with wavelengths wider than the system
aperture.

4 Annular Aperture Tilt-Phase Correlation
Calculations

The remaining impact to be quantified from Eq. (11) is the
influence of the TP correlation TP. But, in doing so, we rec-
ognize, based on Eqs. (24) and (46), that the TV term is in-
dependent of the integration variable v in Eq. (11), as is the
wave structure function [first term in the exponential in
Eq. (11)]. Therefore, these terms can be factored out of
the integral. Conversely, the TP term is dependent on v,
and we must write
EQ-TARGET;temp:intralink-;e049;326;227

MTPðωÞ ¼
Z

du
W̃ðuþ ω∕2ÞW̃ðu − ω∕2Þ
½πð1 − C2Þ∕4�M0ðω; CÞ

× expfþTPðD2u;ωÞg; (49)

where the aperture effect has been normalized such that the
entrance pupil area can be written using Ã ¼ πð1 − C2Þ∕4.
Integration variable v has also been replaced by u ¼ v∕D2.

The full transition to a dimensionless form for TP requires
several additional steps. Introducing a ¼ WTp and the
Eq. (30) definition of the components into Eq. (10), then
using Eq. (10) in the remnants of Dψ in Eq. (8) (gives us
a 1/2 factor), and applying isotropic and homogeneous con-
ditions for the structure functions
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EQ-TARGET;temp:intralink-;e050;63;752

TPðv;ωÞ¼2

2
h½ϕðvÞ−ϕðv−D2ωÞ�½a·ðD2ωÞ�i

¼
�
½ϕðvÞ−ϕðv−D2ωÞ�

�
D2W2

T

Z
dv0Wðjv0jÞϕðv0Þðv0 ·ωÞ

�

¼D2W2
T

2

Z
dv0Wðjv0jÞðv0 ·ωÞh2ϕðvÞϕðv0Þ−2ϕðv−D2ωÞϕðv0Þi

¼D2W2
T

2

Z
dv0Wðjv0jÞðv0 ·ωÞ½−Dϕðv−v0ÞþDϕðv−v0−D2ωÞ�:

(50)

Introducing dimensionless u ¼ v∕D2 and rewriting the
two phase structure function elements based on Eq. (4)’s
decomposition into J and Y functions
EQ-TARGET;temp:intralink-;e051;63;584

TP ¼ D4
2W

2
TJðS∕QÞ
2

Z
du 0W̃ðju 0jÞðu 0 · ωÞ

× fY½Qðu − u 0 − ωÞ� − Y½Qðu − u 0Þ�g: (51)

The resulting integral is now only a function of u, Q, and C.
We also use the normalized W̃ window function. The results
of this integral can be tabulated and interpolated separately
for a more general recombining with multiple values of the
leading turbulence strength factor. The results are also inde-
pendent of the vector nature of ω due to rotational aperture
symmetry. Thus, the tabulated results need only be five-
dimensional, facilitated by assuming ω ¼ ωx̂ is oriented
along the x-axis.

To evaluate the integral in Eq. (51), let us divide the win-
dow function W̃ into an inner and an outer portion using the
form
EQ-TARGET;temp:intralink-;e052;63;391

FXðQ;C; u;ωÞ ¼
Z

du 0Cyl
�ju 0j
C

�
ðu 0 · ωx̂Þ

× ½YðQju − u 0 − ωx̂jÞ − YðQju − u 0jÞ�;
(52)

such that

EQ-TARGET;temp:intralink-;e053;63;301TP ¼ 32JðS∕QÞ
πð1 − C4Þ ½FXðQ; 1; u;ωÞ − FXðQ;C; u;ωÞ�: (53)

Finally, to evaluate MTP, we use the following N-factor
adjustment
EQ-TARGET;temp:intralink-;e054;63;239

MTPðωÞ ¼ expðNÞ
Z

du
W̃ðuþ ω∕2ÞW̃ðu − ω∕2Þ
½πð1 − C2Þ∕4�M0ðω; CÞ

× expfþTPðv;ωÞ − Ng; (54)

where variable N ensures that the integral can be evaluated
within the numerical precision of the machine in the presence
of large S (strong turbulence). Use of FX means only two sets
of tabulated results need to simultaneously reside in the com-
puter memory to evaluate results for any given C value.

5 Combined Short-Exposure Atmospheric
Modulation Transfer Function Model

Sections 3 and 4 developed expressions for the TV and TP
components of SEMTF, respectively. Let us summarize these

results here. The overall model of the short-exposure expres-
sion will be written as

EQ-TARGET;temp:intralink-;e055;326;730MSðωÞ ¼ M0ðω; CÞMSAðω; S; Q; CÞ
¼ M0ðω; CÞMLAðω; SÞMTVMTP: (55)

The M0 expression is given in Eq. (21).MSA is the complete
short-exposure atmospheric MTF consisting of long-expo-
sure (LA), TV, and TP components. The LA component
can be written

EQ-TARGET;temp:intralink-;e056;326;636MLAðω; SÞ ¼ expf−DðD2ωÞ∕2g ¼ expf−JðSωÞ∕2g;
(56)

using the wave structure function from Eq. (3). The remain-
ing two components are obtained from the MTV component
constructed from
EQ-TARGET;temp:intralink-;e057;326;558

MTVðω; S; QÞ ¼ expð−TVÞ

¼ exp

�
−1.0432S5∕3

½W1ðCÞ −W3ðCÞ�
ð0.0375 − 0.0049Þ G̃ðQ;CÞω2

�
;

(57)

where the TV term in Eq. (11) has been expanded using
Eq. (22) and ha · ai from Eq. (44).

The remaining MTP effect must be evaluated numerically
using Eq. (54). However, rather than leave the results only in
this tabulated format, an integrated short-exposure correction
term has been developed as a perturbation of the original sol-
ution suggested by Fried in treating the circular case

EQ-TARGET;temp:intralink-;e058;326;402MSAðω; SÞ ¼ expf−JðSωÞ∕2½1 − α̃ω1∕3�g: (58)

Here, Fried15 recommended setting the α̃ parameter to
either a value of 0.5 or 1.0 (small and large Q cases).
Here, the MTV and MTP effects are combined to replace
Fried’s α̃ by the function Vðω; X;Q; CÞ

EQ-TARGET;temp:intralink-;e059;326;326MTPðω; S; Q; CÞMTVðω; S; Q; CÞ
¼ expf½JðSωÞ∕2�Vðω; 2.1S;Q;CÞω1∕3�; (59)

where X ¼ 2.1S replaces S.
To tabulate these effects, function Vðω; X;Q; CÞ was

evaluated at 103 ω values, 41 logarithmically increasing
X values ranging from 0.1 to 103, 9 logarithmically increas-
ing Q values ranging from 1/16 to 16, and 12 C values rang-
ing from 0.00 to 0.95, for a total of 456,084 calculations.

To parameterize the C variability, a parameterized C
dependence is constructed for each parameter

EQ-TARGET;temp:intralink-;e060;326;188UðCÞ ¼ U0 þ U1CþU2C2 þU3C3 þ U4C4 þ U5C5:

(60)

The original circular aperture solution was handled as an
80-parameter model. Using the above expression, each of the
80 parameters would need to be characterized by six separate
parameters, resulting in a 480-parameter model.

The forms taken by the V at different C values are plotted
in a series of graphs below. Figure 4 illustrates samples from
the original circular aperture data set. The two groups of lines
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denote Q ¼ 1∕16 and Q ¼ 16 behaviors at [essentially] the
extents of low Q (high diffraction effects) and high Q (far-
field) imaging conditions. (Telescope type systems typically
operate in the range ofQ ¼ 2: : : 4.) One finds that the behav-
ior of V does not change significantly above Q ¼ 2.

The significant feature of the V curves at high Q values is
that they exceed unity over a range of frequencies ω but
fall below unity as ω → 1. By falling below 1.0 at high
frequency, the resulting forms obey diffraction limits, as
expected. Conversely, when V > 1 at intermediate frequen-
cies, one sees a midrange frequency correction of long-expo-
sure turbulence blurring. This recovery is limited to high Q
system configurations.

Extending the results illustrated in Fig. 4 to noncircular
apertures, Figs. 5 and 6 illustrate behaviors under conditions
of moderate (C ¼ 0.50) and large (C ¼ 0.95) obstructions.
As shown, the main impact of increasing central obscuration
is to affect midrange spatial frequencies. V values at these
frequencies become increasingly attenuated as C increases.
Nonetheless, interestingly, the floor values of the functions
(at ω ¼ 0 and ω ¼ 1 frequencies) remain unaffected.

To more directly compare these results, Fig. 7 shows V
values from a moderately strong turbulence scenario
(X ¼ 10) for a moderately large aperture (Q ¼ 4) over a
range of C parameter values. Here, C varies from 0.00 to

0.95, but most of the dynamic effects (degradation of the
MTF in the high C range) are not significant before
C ¼ 0.30 and are only severe beyond C ¼ 0.50. Thus, the
majority of systems operating at C ≤ 0.50 experience turbu-
lence effects nearly identical to that of circular apertures, dif-
fering primarily in terms of the form of the system MTF.

To further examine the variability of the V function, let us
next note from a comparison of Figs. 5 and 6 how similar the
evolution of a given family of V curves is for a givenQ and C
combination as X (S) and ω are varied. The primary elements
that appear to change dramatically are the height of the base-
line value of V along with the height of the peak above the
baseline. The former is termed V0ðQ;CÞ, and the latter is
designated as VMðQ;CÞ. Figures 8 and 9 illustrate these
functional behaviors.

As illustrated in Fig. 8, there are minimal differences in
V0 as C varies. The primary driving factor appears to be due
to diffraction, as parameterized by its Q variations.

The VM function appears to exhibit both variations in C
and Q. As opposed to the V0 function, the influence of the
central obscuration can significantly modulate this height.
Note, particularly, that increasing C has a degrading effect
on the midrange frequency enhancement noted for the circu-
lar aperture case. Nonetheless, we find that for relatively

Fig. 4 Unnormalized V ðω; X ; Q;CÞ for C ¼ 0.00.

Fig. 5 Unnormalized V ðω; X ; Q;CÞ for C ¼ 0.50.

Fig. 6 Unnormalized V ðω; X ;Q;CÞ for C ¼ 0.95.

Fig. 7 Plots of V ðω; X ; Q; CÞ for varying central obscuration param-
eter C for Q ¼ 4 and X ¼ 10.
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large apertures (Q > 2), there is in fact no value ofC that will
not produce the needed enhancement to result in V > 1 at
some range of frequencies. On the other hand, if Q is
small, e.g., Q < 1∕16, there is no C value that can produce
the frequency enhancement region. Also, we see again that
for C < 0.3 and Q > 2 one finds a plateau region where the
behavior of the annular system approximates that of the cir-
cular aperture system.

6 Applicability
Dashen’s11 analysis of the applicability of the RA is now
reviewed. Dashen proposed two parameters, Φ and Θ, to
describe the influences of diffraction and turbulence on
the propagation environment. According to Dashen, if Θ ≫
Φ the RA should apply, where Φ represents the rms phase
fluctuation using first-order geometric optics to measure tur-
bulence effects and Θ represents the diffraction effects due to
a characteristic scale size of the turbulence itself. These two
parameters were studied in Ref. 6, resulting in the relation

EQ-TARGET;temp:intralink-;e061;326;752Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.31k2LC2

nL
5∕3
o

q
¼ 3.815ðLo∕r0Þ5∕6; (61)

using the relation for r0 in Sec. 2.1 and where Lo is the tur-
bulence outer scale, and

EQ-TARGET;temp:intralink-;e062;326;700Θ ¼ 6kΛ2∕L ¼ 716.6L2
o∕F2; (62)

using the Fresnel zone, F ¼ ðλLÞ1∕2, and Λ ¼ 4.36Lo. (This
result represents the peak of the turbulent spectrum, essen-
tially the integral scale.)

Taking the ratio

EQ-TARGET;temp:intralink-;e063;326;624

Θ
Φ

¼ 187.8
L7∕6
o r5∕60

λL
¼ 75.038L7∕6

o

L3∕2ðC2
nÞ1∕2

≫ 1: (63)

Using typical values, this condition is easily achieved
(e.g., Lo ≥ 0.5 m, C2

n < 10−12 m−2∕3, L ≤ 10 km). Potvin17

has further shown recently that RA is consistent with beam
steering based on Fermat rays (the Eikonal) affected by
large-scale turbulent perturbations.

Moreover, from this author’s perspective, the RA is
under-rated, often being conflated with the Born approxima-
tion. The alternative, the mutual coherence function (MCF)
approach, measures the degree to which an advancing wave-
front loses coherence. Incoherent light involves the propaga-
tion of individual decorrelated photons. It is difficult to
imagine how any given photon could become decorrelated
from itself. Hence, MCF does not appear to be examining
the same problem, and it may be that the RA is closer to
the correct approach for handling incoherent radiation.

7 Conclusions
The complete model of the annular aperture SEMTF
involves 480 parameter values consistent with the 80-param-
eter circular aperture model expanded to the annular aperture
through use of the polynomial construction of Eq. (61),
which multiplies the total number of parameters by a factor
of six. The full model is available upon request and approval
through appropriate channels.

In light of the degrading behavior of the SEMTF as C
increases, one wonders whether additional terms that would
significantly improve the performance could be relatively
easily introduced. Hufnagel18 addressed higher order phase
corrections, but only for circular apertures. Perhaps the full
annular aperture problem could supply added correction
capabilities at high turbulence levels that are not achievable
for circular apertures.

The development and analysis process described have
been designed to provide system modelers and developers
a tool for simulating a broad spectrum of system conditions
and behaviors. In general, the behavior of annular aperture
systems do not deviate significantly from circular aperture
systems until C > 0.4. Study results may also be of use
to adaptive optics designers by providing a baseline of per-
formance when no correction is applied.
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