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Abstract. Object detections are critical technologies for the safety of pedestrians and drivers in autonomous
vehicles. Above all, occluded pedestrian detection is still a challenging topic. We propose a new detection
scheme for occluded pedestrian detection by means of lidar–radar sensor fusion. In the proposed method,
the lidar and radar regions of interest (RoIs) have been selected based on the respective sensor measurement.
Occluded depth is a new means to determine whether an occluded target exists or not. The occluded depth is a
region projected out by expanding the longitudinal distance with maintaining the angle formed by the outermost
two end points of the lidar RoI. The occlusion RoI is the overlapped region made by superimposing the radar RoI
and the occluded depth. The object within the occlusion RoI is detected by the radar measurement information
and the occluded object is estimated as a pedestrian based on human Doppler distribution. Additionally, various
experiments are performed in detecting a partially occluded pedestrian in outdoor as well as indoor environ-
ments. According to experimental results, the proposed sensor fusion scheme has much better detection per-
formance compared to the case without our proposed method. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.OE.56.11.113112]
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1 Introduction
In recent years, research on intelligent vehicles has become
very interesting to many people.1,2 In addition, various tech-
niques have been applied to develop autonomous driving
technologies, such as advanced driver assistance systems,
advanced smart cruise control, lane keeping assist systems,
and autonomous emergency braking systems. In spite of
such technological advancements, pedestrian accident rates
continue to increase annually.

Technologies for detecting objects including a pedestrian
have been continuously developed to use camera, lidar, and
radar. Lidar is able to measure a precise distance between the
sensor and an object. In addition, the sensor has a wide field
of view. On the other hand, lidar-based detection techniques
have relatively low performance compared to that of camera-
based techniques, which use the shape of an object. The
radar makes use of the Doppler shift to extract the distance
and velocity. However, it is difficult for a radar-based algo-
rithm to recognize objects because they appear as many scat-
tered signals, and long processing time is required. Research
on overcoming sensor limitations has been actively car-
ried out.

Sensor fusion techniques have been proposed to over-
come the limitations of single sensors and to improve the
detection performance. In the case of the lidar–camera fusion
technique, lidar-based signal processing has been used to
extract the region of interest (RoI) of an object and cam-
era-based image processing has been applied to reduce
the overall processing time.3 In other words, image

processing has finally been done in the region allocated
from lidar. Conventional lidar–radar fusion technique has
mainly been used to detect the presence of vehicles and
motorcycles.4,5 Velocity information on moving vehicles is
extracted from radar; the shapes and types of objects are esti-
mated using the width, length, height, and position measured
with lidar. However, the detection method for pedestrians has
not yet been investigated in conventional lidar–radar fusion
techniques because they have low reflection and fewer scat-
tering points during pedestrian movements. In particular,
when a pedestrian is partially obscured by another object,
there is tremendous difficulty in detecting the occluded
pedestrian.6 This is because it is difficult to extract a pedes-
trian’s shape or feature information. To solve this problem,
various studies using sensor fusion techniques based on cam-
era have been proposed for detecting occluded objects.7–12

The sensor fusion techniques use camera to detect and clas-
sify objects, as determining the similarity between the object
extracted from the sensor and the training data for the
machine learning. However, to perform machine learning
using this technique, various features of pedestrians are
required. Camera-based techniques extract features, such
as faces, arms, and legs that partially appear from pedes-
trians. To classify objects, similarity estimation and tracking
techniques are performed over several frames. During this
processing, there is the possibility of missing pedestrians
due to a lack of feature data.

To improve the detection performance, we propose, in this
paper, a new occluded pedestrian detection scheme using
lidar–radar sensor fusion. In our proposed method, we
have introduced two new concepts: occluded depth and
occlusion RoI. An occluded depth is a special region in*Address all correspondence to: Jonghun Lee, E-mail: jhlee@dgist.ac.kr; Sang
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order to determine whether an occluded target exists or not.
A moving object inside the occluded depth is measured only
by radar, not by lidar. To detect occluded pedestrians, we
used various RoIs, such as radar RoI, lidar RoI, fusion RoI,
and occlusion RoI. First, radar RoIs are created according to
the range and azimuthal angle of target objects measured by
radar. Similarly, lidar RoIs are assigned by using object
information obtained from lidar, such as the width, length,
height, position, and curve features. Fusion RoIs are made
by superimposing radar RoIs and lidar RoIs. The occlusion
RoI is created by overlapped the radar RoI with the occluded
depth to detect obstructed objects. Therefore, by taking ad-
vantage of the position and Doppler information of the object
within the occlusion RoIs, we can determine whether there
are moving objects or not. Finally, the radar human Doppler
pattern is used to determine if the occluded object is
a pedestrian.

This paper is organized as the following: Sec. 2 reviews
the previous object detection technologies; Sec. 3 proposes
the occluded depth based lidar–radar sensor fusion. Section 4
investigates the experimental results for verifying the detec-
tion performance of our proposed method taking real road
environments into consideration. Finally, Sec. 5 summarizes
the concluding remarks.

2 Related Work
Conventional object detection technologies often employ
a camera sensor because it extracts easily various features,
such as the color, contour, and image pattern. In the image
processing, the sliding window method is used for object
detection and feature extraction in the whole image.2

However, their technologies have drawbacks like heavy cal-
culation burden and high sensitivity to the environment. In
this paper, we use lidar and radar instead of the camera in
order to detect the occluded pedestrian as well as pedestrian.
This section reviews the conventional sensor fusion technol-
ogies for occluded object detection.

2.1 Lidar–Camera Sensor Fusion

Generally, lidar–camera sensor fusion has been used for
object detection. Image processing using a camera distin-
guishes objects based on the color information of an
image. Therefore, various color information is used for
object detection, but the detection performance is obviously
affected by temporal changes of light. Also, since image
processing is performed on a pixel-by-pixel basis in every
image, it requires complicated calculations. A typical exam-
ple is a histogram of oriented gradient (HoG). HoG is a tech-
nique for calculating a gradient from a portion of an image.
Based on the calculated gradient, the object is segmented
with the results of the histogram.3 Lidar processing for object
detection estimates the contour based on the object informa-
tion, such as the width, length, height, and position.
However, it is difficult for the lidar-based detection method
to obtain features, including the color of an object. To com-
pensate their shortcomings of individual sensors, lidar–cam-
era sensor fusion is used. Through sensor fusion, the
computational complexity of image processing is reduced
and the detection performance is improved. Lidar–camera
sensor fusion is usually composed of three steps: calibration,
feature extraction, and classification.3,13

The first step is a calibration process that matches the
coordinates of lidar and camera. In a calibration step, the dis-
tance between an object and two sensors is measured, and the
position difference is compensated. The second step is to
extract object information using lidar. In case of 2-D lidar
process, its width and thickness are obtained, whereas 3-
D lidar process extracts its width, thickness, and height of
an object. The final step is the object classification using
camera. The image obtained from a camera is categorized
on its position of an object basis. The classification process
is performed by using machine learning algorithms, such as
support vector machine and AdaBoost.2,3 AdaBoost is one of
adaptive boosting and accomplishes the final strong classifier
by adding weighted results to multiple weak classifiers.3

Another technique to apply in lidar–camera sensor fusion
is occlusion reasoning methods. In the case of partially
occluded objects, it is difficult to extract its features of a tar-
get accurately. Typical occlusion reasoning methods are
edge-contour based reasoning and frame comparison reason-
ing. Edge-contour based reasoning is a method to infer an
object by means of its edge and contour of an occluded
object.8–10 Frame comparison reasoning uses a continuously
input image dataset in accordance with time. This method
determines the occlusion by analyzing the continuous
image data. The occluded object is inferred by comparing
the current and previous frames. This method is very effec-
tive in case a short-time instant occlusion happens. However,
it is difficult to estimate a consecutive occlusion because it is
limited by buffer size.11,12,14 These fusion methods still have
a reliability problem due to sensitivity to light change. In
cases in which a sensor is highly sensitive to light change,
an image of an object can be created even in low light con-
ditions, but the image loses contrast and appears blurry
because of increased noise. In a real driving environment,
this change tends to cause sensors to miss obstacles. In addi-
tion, it is difficult for lidar–camera sensor fusion to simulta-
neously detect objects and estimate their speeds in a single
frame. Therefore, to overcome this limitation, lidar–radar
sensor fusion has been proposed to detect occluded objects
and their movement.

2.2 Lidar–Radar Sensor Fusion

Lidar–radar sensor fusion is robust to environmental change
than camera because it uses the laser and radio frequency
signal.4,5,15–19 To our best of our knowledge, conventional
lidar–radar fusion has been mainly focused on detecting
moving vehicles, and researches on pedestrian detection
have not been investigated yet before. In previous methods,
a vehicle is estimated by obtaining its width, length, and
shape from lidar and then acquiring its velocity from radar.4

A typical occlusion detection method using lidar–radar
sensor fusion is modeling-based method.20 The vehicle mea-
sured by lidar shows an L-shape based on the shape of the
front and side. However, in the case of non-line of sight
(LoS) vehicles that are partially obscured by other obstacles,
the lidar measurement data do not form a perfect L-shape.
This imperfect shape is compensated for L-shape through
Ramer algorithm.20,21 However, they have some limitations
to detect a pedestrian since a human has an arbitrary shape.

In this paper, we propose a new method for a partially
occluded pedestrian detection in lidar–radar sensor fusion.
In our proposed method, we introduce new concepts of an
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occluded depth generation and occlusion RoI for occluded
pedestrian detections. In addition, we will explain the pro-
cedure of our proposed detection scheme in the next section.

3 New Detection Scheme for Partially Occluded
Pedestrian

Our proposed method consists of object detection, sensor
fusion, and then pedestrian detection. Before object detection
for lidar and radar sensor fusion, the calibration is performed
for matching to the respective coordinate system to compen-
sate for the installment position difference between the two
sensors.

Figure 1 shows the schematic procedure of our proposed
pedestrian detection. In the case of radar during the object
detection step, the parameter information of objects, such
as range, velocity, and angle, is measured through R&V cal-
culation. In the case of lidar, many scattering data are sep-
arated into several groups by clustering before features, such
as the width, length, height, position, and curve can be
extracted. In sensor fusion, lidar and radar RoIs have been
selected through the outputs of the sensors. Radar RoI is
made using the detected range, velocity, and azimuthal
angle, which are the measurement output of radar for moving
objects; lidar RoIs are created using object information
obtained from lidar, such as the width, length, height, posi-
tion, and curve features. The occluded depth is a new means
to discover an obscured area hidden by obstacles. An object
within the occluded depth is detected using the radar meas-
urement information; the occluded object is estimated as a
pedestrian by means of radar human Doppler distribution.
In addition, to reduce the amount of data to be computed,
our proposed method has made precise fusion RoI by super-
imposing the RoIs of each sensor. Then, the occlusion RoI is
the area, where the depth and radar RoI overlap, meaning

that a hidden object may exist within this zone. Finally, a
pedestrian can be detected utilizing the human Doppler pat-
tern from radar and/or the human fitting curve from lidar.

3.1 Object Detection

The radar measures the range and velocity information of the
object.15 The lidar measures the distance, angle, and height
of an object. The measurement data are represented as many
scattering points. Through the clustering process, the scatter-
ing points are combined into several groups that are strongly
dependent on the number of objects. In general, there are
many methods for clustering lidar scattering data, such as
distance-based clustering, standard deviation clustering,
and K-means. Distance-based clustering is a popular method
for grouping into the same cluster if the distance between
each scattered point is within a threshold value. The thresh-
old is calculated by a vector norm operation in accordance
with distance. Standard deviation clustering is computed
using the standard deviation of the object points obtained
from lidar and generates a cluster if the threshold is not
exceeded. This method is suitable for clustering objects in
similar locations but, in contrast to distance-based clustering,
it is not suitable for separating adjacent objects of different
types. K-means is a well-known clustering technique.
However, the clustering performance is strongly dependent
on the initial value. In this paper, we used a simple distance-
based clustering method.

Figure 2 shows their human lidar features according
to various human postures. As can be seen in Fig. 2, the
lidar data have unique features forming a streamlined
shape. In order to characterize human lidar features, the
lidar data are approximately fitted to a quadratic and
higher-order polynomial function. The human slope features,

LIDARRADAR
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RADAR Human 
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Sensor Fusion

Object Detection

Occlusion ROI Fusion ROI
LIDAR Human 
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LIDAR ROIOccluded DepthRADAR ROI

R&V 
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Occluded Object 

Detection

Obvious Object 
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Fig. 1 Our proposed scheme for human detection using lidar and radar sensor fusion.
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with quadratic polynomial curve fitting, are uniquely distin-
guished from other objects. In this experiment, we use a low-
resolution 2-D lidar (RPLIDAR produced by Robopeak).
One of human characteristics is clearly represented by
a quadratic curve, even though the low-resolution lidar
has fewer data points than the high-resolution lidar. The
approximated quadratic curve based on the lidar data is
the human fitting curve. We extend this technique to the
high-resolution lidar to extract human slope features.

3.2 Sensor Fusion

This subsection describes the various processes of RoI gen-
eration and the sensor fusion schemes. The radar RoI is
determined by the range and azimuthal angle of the radar
output. In addition, the radar can measure a walking human
even in a partially occluded environment. During walking,
the human Doppler distribution has unique repetitive
Doppler and micro-Doppler patterns because one leg is
fixed as the other takes a step forward.22 Due to this radar
Doppler pattern, a human is distinguishable from other
obstacles. This human radar Doppler pattern is called
a human radar feature. The lidar RoI is set based on the mea-
sured width, length, height, and slope of the fitting curve.
Referring to Ref. 1, the thresholds for human width and
length are set to 1.2 m, and the thresholds of height are
from 0.8 to 2 m. In addition, the slope threshold of the
human fitting curve applied in this paper is set to 10. The
slope of the fitting curve is the maximum slope, as shown
in Fig. 2. The width, length, height, and slope to generate
the RoI are defined as the lidar human feature.

Generally, because they detect only LoS objects, detec-
tion algorithms based on lidar have difficulty in detecting
whether or not objects are partially occluded by obstacles.
To confirm the possibility of existing objects being hidden
behind other obstacles, we define the new concept of
occluded depth. The occluded depth is the area behind the
object measured in the lidar; it is not measured in the
lidar. However, an object may exist within this region.
The occluded depth is set to the area filled from the outer-
most point of the object measured by lidar to the maximum
detection distance of the lidar.

Figure 3 shows the creation of radar RoI and lidar RoI,
how to make a connection between occluded depth and
lidar RoI, how to generate occlusion RoI using occlusion
depth and radar RoI, and how to create fusion RoI. We
assume that the relative position difference between radar
and lidar is compensated for after calibration processing.
Figure 3(a) shows the creation of radar RoI. As shown in
Fig. 3(a), radar RoI is expressed as an area, detected by
radar, surrounding a target of interest. In other words, radar
RoI is the rectangular area M surrounding four edge points
m1 ¼ ðr1 sin θr

2
; r1 cos θr

2
Þ, m2 ¼ ð−r1 sin θr

2
; r1 cos θr

2
Þ,

m3 ¼ ðr1 sin θr

2
; r2 cos θr

2
Þ, and m4 ¼ ð−r1 sin θr

2
; r2 cos θr

2
Þ,

where θr is the radar angular resolution and r1 ¼ dr − Δr
2

and r2 ¼ dr þ Δr
2
. And dr is the distance between the

radar and the target of interest and Δr is the radar range res-
olution, equivalent to c∕2B, in which c is the velocity of
light and B is the bandwidth. Radar RoI is strongly
dependent on the radar range resolution and the angular
resolution. Figure 3(b) shows the generation of lidar RoI.
Like radar RoI, the lidar RoI is expressed as the rectangular

Posture Situation Lidar data Fitting data Overlay data

Front

Side

Back

Fig. 2 The fitting curves versus lidar measurement data according to several human postures.
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area G including four edge points surrounding targets of
interest, that is, g1 ¼ ðl1 sin θl

2
þ Δw

2
; l1 cos θl

2
Þ, g2 ¼

ð−l1 sin θl

2
− Δw

2
; l1 cos θl

2
Þ, g3 ¼ ðl2 sin θl

2
þ Δw

2
; l2 cos θl

2
Þ,

and g4 ¼ ð−l2 sin θl

2
− Δw

2
; l2 cos θl

2
Þ, where θl is the lidar

measured horizontal angle of the target of interest, dl is
the distance between the lidar and the surface of the target,
and l1 ¼ dl − Δl

2
and l2 ¼ dl þ Δl

2
: Δw and Δl are predeter-

mined width and length boundaries, respectively.1 Figure 3(c)
shows how to generate the occluded depth from lidar meas-
urement. As shown in Fig. 3(c), occluded depth is created by
the rectangular area P consisting of four edge points
p1 ¼ ðdl sin θl

2
; dl cos

θl

2
Þ, p2 ¼ ð−dl sin θl

2
; dl cos

θl

2
Þ, p3¼

ðdmax sin
θl

2
; dmax cos

θl

2
Þ and p4 ¼ ð−dmax sin θl

2
; dmax cos θl

2
Þ,

where dmax is the lidar maximum detection distance.

Occluded depth is generated from the objects detected in
lidar. Figure 3(d) shows how to create occlusion RoI from
occluded depth and radar RoI. We can identify the possibility
of the existence of any occluded objects by utilizing occluded
depth and radar RoI because radar measures any objects
within the occluded depth; lidar, however, cannot measure
such objects. Thus, occlusion RoI is a new region generated
by overlapping the occluded depth and radar RoI, which
process is necessary to find any occluded objects. As
shown in Fig. 3(d), the occlusion RoI is created by the over-
lapping region O consisting of four edge points o1 ¼
ðr3 sin θl

2
; r3 cos θl

2
Þ, o2 ¼ ð−r3 sin θl

2
; r3 cos θl

2
Þ, o3 ¼

ðr4 sin θl

2
; r4 cos θl

2
Þ and o4 ¼ ð−r4 sin θl

2
; r4 cos θ

l

2
Þ, where

θr > θl indicates that the radar angular resolution θr is greater
than the lidar measurement horizontal angle θl. Note that the

(a) (b)

(c) (d)

(e)

Fig. 3 Procedure of RoI generation: (a) radar RoI, (b) lidar RoI, (c) occluded depth, (d) occlusion RoI, and
(e) fusion RoI.
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equations for the four edge points of occlusion RoI are the
same as those for the four edge points of radar RoI, except
for θl is used instead of θr. Figure 3(e) shows the creation
of fusion RoI, an overlapped region produced by combining
radar RoI and lidar RoI. As shown in Fig. 3(e), the fusion RoI
is generated by the overlapping region surrounding the four
edge points F1 to F4. In other words, the fusion RoI F
can be simply given by M ∩ G, where M and L are the
radar and lidar RoIs, respectively.

3.3 Pedestrian Detection

An occluded object detection is a processing step to identify
any object located in the occluded depth. The occluded
objects are detected by utilizing the radar measurement
results such as the measured range, velocity, and Doppler
pattern. In this paper, we identify any hidden object as a
pedestrian within the occlusion RoI by using this radar
human feature. In the pedestrian detection step, in case of
an occluded person, the radar human feature is only used
for pedestrian detection. However, in case that an object
is outside from an occlusion RoI, a person is detected by
using the radar human feature and the lidar human feature
that are labeled by width, length, height, slope of fitting
curve, and Doppler.

Figure 4 is a step-by-step procedure of lidar and radar sen-
sor fusion for pedestrian detection based on the occluded
depth. Figure 4(a) is a snapshot picture showing a situation
in which a pedestrian is obscured by another pedestrian.
Figure 4(b) is the lidar measurement data. Figures 4(c)
and 4(d) are the radar RoI and lidar RoI, respectively. The
lidar measures only the front one of two pedestrians.
Figures 4(e) and 4(f) show the occluded depth, and the fusion
and occlusion RoIs, respectively. As mentioned above, the

fusion RoI is generated by superimposing lidar RoI and
radar RoI. And, the occlusion RoI is built by overlapping
the occluded depth and radar RoI. These fusion RoI and
occlusion RoI are specified zones for occluded and not
occluded object detection, respectively. Figure 4(g) is the
final pedestrian detection result showing occluded pedestrian
represented by occlusion RoI as well as a LoS pedestrian in
fusion RoI. The occluded pedestrian is detected from the
radar Doppler pattern within the occlusion RoI. And also,
the pedestrian detection is done by using the radar human
feature and the lidar human feature within the fusion RoI.

4 Experiment
To verify the performance of our proposed algorithm, various
experiments are done in both indoor and real road environ-
ments. Both obvious and occluded situations are included in
the experiments.

4.1 Experimental Setup

We used a Velodyne VLP-16 lidar and a 24-GHz frequency
modulated continuous wave (FMCW) radar23,24 in the
experiment. Table 1 shows their critical specifications.
The radar was attached to its bumper position of a vehicle
and the lidar was installed on about 2 m height from the
ground. They have similar configurations of the autonomous
vehicle. Experiments were performed at varying obstacle
distances by about 6, 8, and 10 m. Multiple target experi-
ments were made under the environment that two moving
people get close and separate each other. The developed log-
ging board and software25 were used to collect the radar
measurement data.

The radar used a fast-ramp based FMCW modulation.15

The signal reflected from an object was sampled by means of

Fig. 4 Procedure of lidar and radar sensor fusion scheme based on occluded depth: (a) a snapshot
picture of an occlusion situation, (b) the lidar measurement data, (c) the radar RoI, (d) the lidar RoI,
(e) the generated occluded depth, (f) the fusion RoI and occlusion RoI, and (g) the pedestrian detection
results.
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an analog digital converter. The sampled signal per ramp was
transformed by the range-frequency spectrum through a
range-FFT. Generally, the signal reflected from a pedestrian
can be masked off due to a strong surrounding clutter
because a pedestrian has a relatively low reflectance.
Thus, a moving target indication removed clutter compo-
nents and extracted only a moving object. And then, a
range-Doppler map was built from a Doppler-FFT process-
ing. The object was finally extracted by finding peaks with
an adaptive threshold based on cell averaging constant false-
alarm rate in a 2-D range-Doppler map. The obtained dis-
tance and velocity are the object information in the radar

RoI. The Doppler pattern of a pedestrian was obtained
from a Doppler-FFT processing.

4.2 Experimental Results

Many experiments are made in various indoor and outdoor
situations. In the experiments, targets mean both ordinary
and partial occluded pedestrians. Figure 5 summarizes the
indoor experimental scenarios and some typical examples
of final detection results. In the indoor scenario (1), the
pedestrian moves without any occlusion. In scenario (2),
pedestrians are partially hidden by obstacles. In scenario
(3), pedestrians are hidden temporarily and they move out
any LoS space. In the experimental results, lidar RoI is rep-
resented by L_RoI, radar RoI by R_RoI, occluded depth
by Occ_D, fusion RoI by F_RoI, and occlusion RoI by
O_RoI. Also, the symbol #P means that a person has
been detected.

Figure 6 shows an example of pedestrian detection results
in several indoor open environments. In an open environ-
ment, as shown in Fig. 6, a pedestrian was clearly measured
in both the lidar and the radar, simultaneously. Figure 6(a) is
the experimental real picture. Figure 6(b) shows the lidar
measurement data. The horizontal boundary in the radar
RoI was determined by the azimuthal coverage of radar.
The vertical boundary is set to any predetermined threshold
that identifies a pedestrian in Ref. 1. In Figure 6(c), the radar
RoI and the lidar raw data cluster are represented by the
dash-dot rectangle and black points, respectively. Since
there is only one moving object in the radar RoI, the object
in this cluster was moving. The lidar RoI was indicated by
the dot rectangle, which made by clustering the measured
data with the appropriate human width, length, height,
and slope thresholding. To obtain its precise position of

Table 1 The specifications of the lidar and radar used in the
experiments.

Specification Lidar Radar

Type 903 nm laser FMCW

# of channels 16 1

Maximum range (meter) 100 15 (human)

Field of view (horizontal) 360 deg 30 deg

Field of view (vertical) 30 deg (þ15 deg to
−15 deg)

—

Center frequency (GHz) — 24

Radial velocity (km/h) — þ200 to −200

Bandwidth(MHz) 250

Sampling rate (MHz) 0.3 5

Environment Indoor
# of Scenario Indoor (1) Indoor (2) Indoor (3)

Schematics

Detection 
Results

Situation No occlusion Full occlusion
Partial
occlusion

Fig. 5 Indoor experimental environment.
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an object, the fusion RoI was extracted by overlapping the
radar RoI and lidar RoI each other, as shown in Fig. 6(e).
The fusion RoI represents line rectangle, as shown in
Fig. 6(f). The occluded depth was assigned as an area filled
between two lines in Fig. 6(g). Figure 6(f) shows the final
detection results in the situation without any barrier. To con-
firm a pedestrian within the fusion RoI, the radar measured
Doppler pattern was used. Figures 6(i) and 6(j) show the
radar measurement range and Doppler spectra in frequency
domain, respectively. Figure 6(j) is the velocity distribution
of a pedestrian measured from radar. The measured instanta-
neous velocity has a broad distribution about 5 km∕h due to
a pedestrian movement. Figures 6(k) and 6(l) show the meas-
urement range and Doppler variations along a time of the
radar output for a moving pedestrian, respectively. A pedes-
trian moved back and forth repeatedly in front of the sensors.
As depicted in Fig. 6(l), the radar Doppler distribution is
caused by the leg and arm sway during a human movement.
Generally, a moving pedestrian has repetitive Doppler and
several micro-Doppler patterns when the pedestrian moves
one leg fixes and the other swings.

Figure 7 summarizes the outdoor experimental situations
and some typical examples of final detection results. In
the experiments, single-target and multitarget were taken
into considerations. Also, various occluded scenarios were
included considering momentary and partial occlusion in
both temporal and spatial events. The outdoor scenarios
(1), (2), and (3) have the same configuration as the indoor
scenarios. The outdoor scenarios (4) and (5) were considered
for multiple targets and partial occlusion situations.

Figure 8 shows the pedestrian detection result in an out-
door scenario (2) with the front occlusion. Figure 8(a) is
a snapshot picture showing an occluded pedestrian situation
in the outdoors. Here, a pedestrian is partially occluded.

Figure 8(b) is the measured lidar data. In the measured
lidar data, the pedestrian is not measured because it is
occluded by the front obstacle. Figure 8(c) shows the
radar RoI and the occluded depth. The occluded pedestrian
can be detected by overlapping the radar RoI and occluded
depth. Figure 8(d) is the occluded pedestrian detection result
using the radar Doppler distribution. Figure 8(e) is the radar
measured range spectrum corresponding to the obstacles,

Fig. 6 The experimental results in an indoor scenario: (a) experimental environment, (b) the lidar meas-
urement data, (c) the radar RoI, (d) the lidar RoI, (e) the RoI overlay for extraction of the fusion RoI, (f) the
Fusion RoI, (g) the occluded depth, (h) the final pedestrian detection result, (i) the radar range spectrum,
(j) the radar velocity spectrum, (k) the radar range variations of a pedestrian with time, and (l) the radar
Doppler variations of a pedestrian with time.

Optical Engineering 113112-8 November 2017 • Vol. 56(11)

Kwon et al.: Detection scheme for a partially occluded pedestrian based on occluded depth in lidar–radar sensor fusion



trees, and a pedestrian. Figure 8(f) is the radar measured
Doppler spectrum. A broad peak is observed at a velocity
of about 5 km∕hr and this peak corresponds to an occluded
pedestrian. Figures 8(g) and 8(h) are the radar range and
Doppler variations along time in a condition that a pedestrian
is moving with a partial occlusion, respectively.

Figure 9 shows one of detection results for an occluded
pedestrian in many outdoor experiments. Figure 9(a) is a real
experimental picture. A pedestrian is partially occluded by
the front barrier. Figure 9(b) is the lidar measurement

data. In spite that a pedestrian exists behind obstacles, the
pedestrian is not detected. Figure 9(c) is the occluded
depth and the radar RoI. In the proposed algorithm, the
occluded depth and the radar RoI overlay each other, and
the occlusion RoI is generated by superimposing the radar
RoI and the occluded depth. Figure 9(d) shows the detection
result of an occluded pedestrian by using occlusion RoI.
Figures 9(e) and 9(f) are the radar measured range and
Doppler spectra, respectively. Two peaks corresponding to
obstacles and a pedestrian are clearly separated in the

Environment Outdoor
# of Scenario Outdoor (1) Outdoor (2) Outdoor (3)

Schematics

Detection
Results

Situations No occlusion Occlusion
Partial
occlusion

Environment Outdoor
# of Scenario Outdoor (4) Outdoor (5)

Schematics

Detection
Results

Situations Multi-target Multi-target

Fig. 7 Outdoor experiment situations and some final detection results.
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range spectrum and a broaden peak in the velocity of about
5 km∕h is observed in the Doppler spectrum. Figure 9(g) is
another picture of the same experiment. Figure 9(h) is the
lidar measurement data. A pedestrian is detected close to
the adjacent obstacle. Figure 9(i) is the estimated radar
and lidar RoIs. Figure 9(j) is the fusion RoI and the final
pedestrian detection results. A pedestrian and its neighboring
obstacles are separated by using the radar velocity informa-
tion within the fusion RoI. Figures 9(k) and 9(l) show the
measured range and Doppler spectrum of the radar output
for the objects, respectively. A pedestrian and its neighboring
obstacles in the range spectrum are merged because of very
close distance each other. However, a pedestrian is clearly
distinguishable from stationary obstacles in the Doppler
spectrum. Figures 9(m) and 9(n) show the range and
Doppler measurement along a time of radar output for the
pedestrian movement in this experiment, respectively.

To verify the detection performance in various complex
outdoor environments, we also performed multiple target
experiments. Figure 10 shows the multitarget experimental
results considering that an occlusion partially occurs. The
experiment was carried out in real pavements. Figures 10
(a) and 10(g) show actual experimental pictures about situa-
tions where two pedestrians are moving. Figure 10(b) shows
the lidar measurement raw data. In this situation, an occlu-
sion did not occur, and both pedestrians and the surrounding
objects were measured in the raw data. In Fig. 10(c), the
R_RoI stands for radar RoI. Because the two pedestrians
moved very closely, they were located inside one unified
radar RoI marked by a dash-dot square. The lidar RoI is
shown in two dot boxes. Figure 10(d) shows the fusion

RoI generated from the respective detection result of each
pedestrian. Figure 10(e) shows the range profile of the
radar output for two pedestrians. There are many other clut-
ters besides two pedestrians.

Figures 10(f) and 10(g) show the Doppler profiles of radar
outputs for pedestrian #1 and pedestrian #2, respectively.
According to these radar Doppler profiles, pedestrians are
distinguished from clutters. Figure 10(h) is a snapshot pic-
ture that one person is partially obscured by the other person
in the same scenario. Figure 10(i) shows the lidar measured
data. A pedestrian is clearly represented by many scattering
points while a partially occluded pedestrian has sparse
points. Figure 10(j) shows the radar RoI and the occluded
depth. The radar RoI and occluded depth are marked in
the dash-dot squares and the in gray line, respectively. In
addition, the lidar RoI and the occlusion RoI are described
by the dot box and the blue line box, respectively. Figure 10
(k) is the final pedestrian detection result. Here, the radar
Doppler human pattern and human fitting curve were utilized
to identify a pedestrian. Figure 10(l) shows the radar range
profiles for two pedestrians in close proximity. As shown in
Fig. 10(l), in case that two pedestrians are very close, they
cannot be separated by only using radar range profiles.
However, our proposed algorithm distinguishes two pedes-
trians with the Doppler difference in the radar Doppler pro-
file. Figures 10(n) and 10(o) show radar range and Doppler
variations along a time for two pedestrians, respectively.

According to various indoor and outdoor experiments,
we proved that our proposed scheme is very effective to
detect a partially occluded pedestrian. Table 2 summa-
rizes the pedestrian detection rates analyzed from various

Fig. 8 The experimental detection results for the front occlusion scenario: (a) a snapshot picture showing
a partially occluded pedestrian in an outdoor experimental environment, (b) the LIDAR measurement
data, (c) the occluded depth and the RADAR RoI, (d) the partially occluded pedestrian detection result,
(e) the measured RADAR range spectrum, (f) the measured RADAR Doppler spectrum, (g) the RADAR
range variations of a pedestrian with time, and (h) the RADAR Doppler variations of a pedestrian
with time.
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experiments. In the previous studies, sensor fusion methods
based on lidar and radar have not yet been investigated for
detecting occluded pedestrians. In this paper, in order to
verify the effectiveness of the proposed sensor fusion method
at detecting partially occluded pedestrians, we have demon-
strated detection improvement using the cases with and with-
out the proposed method. Without our proposed method, the
detection rates in indoor and outdoor are about 45% and

53%, respectively. This is caused by no detection of occluded
pedestrians. However, with our proposed method, the detec-
tion rate of about 89% or more is obtained in both indoor and
outdoor because occluded pedestrians are detected by using
an occluded depth and the radar human feature. According to
the experimental results, our proposed sensor fusion scheme
makes much more improvement in detecting a partially
occluded pedestrian in temporal and spatial events. Even

Fig. 9 The experimental detection results for a single occluded pedestrian: (a and g) a snapshot pictures
showing an outdoor experimental environment, (b and h) the lidar measurement raw data, (c) The
occluded depth and the radar RoI, (d) the occlusion RoI and occluded pedestrian detection result,
(e) the radar measured range spectrum for the pedestrian detection, (f) the radar measured Doppler
spectrum for the pedestrian detection, (i) the predicted fusion RoI, (j) the pedestrian detection result within
the fusion RoI, (k) the radar measured Doppler spectrum, (l) the radar measured Doppler spectrum,
(m) the radar range variations of a pedestrian with time, and (n) the radar Doppler variations of a pedes-
trian with time.
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though in the case of real road environments surrounded by
various obstacles such as trees and light poles and so on, our
proposed method has much higher detection rate of
about 89%.

5 Conclusions
We propose a new scheme to detect a partially occluded
pedestrian by using the occluded depth in lidar–radar sensor

fusion. Generally, lidar and camera have been used for
pedestrian detection. However, a camera is very sensitive to
light intensity and environmental change. In addition, the
occlusion detection in image processing requires a heavy
computation burden and much more processing complexity.

In this paper, we introduce the new concept of occluded
depth and occlusion RoI in order to determine whether an
occluded object exists or not. When an object is hidden

Fig. 10 The experimental detection results in real complex environments: (a and h) a snapshot picture, (b
and i) the lidar measurement raw data, (c) the predicted fusion RoI, (d) the fusion RoIs and pedestrian
detection results, (e) the measured radar range profile, (f) the measured radar Doppler profile for pedes-
trian #1, (g) the measured radar Doppler profile for pedestrian #2, (j) the occluded depth and the radar
RoI, (k) the partially occluded pedestrian detection result, (l) the measured radar range profile, (m) the
measured radar Doppler profile, (n) the radar range variations of two pedestrians with time, and (o) the
radar Doppler variations of two pedestrians with time.
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by any obstacles, the lidar has the difficulty in measuring
an occluded object, whereas the radar measures occlusion
objects. In particular, a moving object is well detected by
using the radar Doppler pattern. Therefore, a partially
occluded pedestrian is finally detected by using the radar
human Doppler pattern within the occlusion RoI through
lidar and radar sensor fusion.

To verify the performance of the partial occlusion detec-
tion in our proposed method, various experiments are
performed in both indoor and real road environments.
According to experimental results, our proposed sensor
fusion scheme has much better detection performance com-
pared to the case without our proposed method. This sensor
fusion scheme will be very useful in an autonomous vehicle
field because a hidden pedestrian can be detected by using
our scheme before a collision happens. This occluded pedes-
trian detection scheme will be applied to prevent accidents in
active safety systems of autonomous vehicles, such as an
active emergency braking system.
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