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Abstract. Multistaircase spiral phase plates (SPPs) are more commonly used to generate an optical vortex, as
compared to ideal continuous surface SPPs. However, due to the complexities and difficulties involved in the
manufacturing of the multistaircase SPPs, the number of the staircases M should not be high and should be
sufficient to guarantee a similarity between theM staircase situation (considering an intrinsic topological charge
l) and the ideal situation. Therefore, a Fraunhofer diffraction analysis model is proposed to quantitatively and
quantificationally solve the diffraction field of the vortex generated by multistaircase SPPs. A finite hypergeo-
metric series summation is applied to solve the diffraction fields of the vortices with different parameters, under
the conditions of uniform and Gaussian incident beams. The simulation results show that the summation of the
first certain terms of the Fourier expansions can appropriately approximate the diffraction field, and M is pos-
itively related with l to approach the ideal situations. Thus, the proposed model can provide a reference for
designing and setting the parameters of multistaircase SPPs. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.OE.58.12.124103]
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1 Introduction
Optical vortices were discovered in the 19th century.1

However, they have only been extensively studied in recent
decades. Owing to the better understanding of lasers and the
development of computers, quantum communication, and
other similar fields, optical vortices have been studied in a
more detailed and systematic manner. Moreover, due to the
characteristics of the diffraction field and its significant
potential for applications, optical vortices have gradually
become the research focus of many institutions and research-
ers, especially in countries such as the United States,
Australia, Canada, and China.2,3 It can be applied in multiple
research fields, such as optical manipulation, optofluidics,
cell cultivation and reproduction, and free-space optical com-
munication based on orbital angular momentum (OAM).4–7

The methods for generating optical vortex beams have
been studied for many decades. They include applying com-
putational holography, mode conversion, spatial light modu-
lator, and spiral phase plates (SPPs).8,9 Among the above-
mentioned methods, the generation method involving the use
of an SPP has many advantages, such as a relatively simple
and small structure that does not require computers or other
active devices. Thus, it is widely applicable. SPPs can gen-
erate vortex beams with integer topological charges as well
as vortex beams with fractional charges.10,11 The height of
the ideal continuous surface SPP is continuous variable with
azimuth, which is used for the theoretical analysis. However,
it is difficult to fabricate ideal continuous surface SPPs.

A multistaircase SPP, which has an increasing staircase as
compared to the continuously spiral and increasing curved
surface of the ideal SPPs, is commonly used to fabricate
ideal continuous surface SPPs. Therefore, the vortex beams
generated by multistaircase SPPs are not ideal. The radial
intensity profiles of the Fraunhofer diffraction field of multi-
staircase SPPs differ from those of the ideal continuous
surface SPPs. Although researchers have proposed an ap-
proximation method for solving the field by using Fourier
expansions and obtained the relative intensities of the differ-
ent terms in Fourier series,11,12 the field components have not
been solved yet. Through theoretical derivation and model-
ing simulations, this study is aimed at qualitatively and quan-
titatively exploring the influence of multistaircase SPPs, with
different Ms and intrinsic topological charges l, on the char-
acteristics of the Fraunhofer diffraction field. As a result, this
study provides a more comprehensive analysis of the optical
vortices generated by multistaircase SPPs. Furthermore, the
proposed model provides a reference for designing multi-
staircase SPPs with different Ms and different ls and gener-
ating various types of optical vortices.

2 Theory

2.1 Fraunhofer Diffraction Analysis for Multistaircase
Spiral Phase Plates

Initially, the characteristics of an ideal continuous surface
SPP and that of a multistaircase SPP are analyzed, as shown
in Figs. 1(a) and 1(b), respectively. Among these character-
istics, θ is the azimuth angle of the SPP, λ is the wavelength
of the incident beam, n is the refractive index of the SPP, n0*Address all correspondence to Dawei Zhang, E-mail: dwzhang@usst.edu.cn
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is the refractive index of air, Δn is the difference between the
refractive index of the SPP and that of air, h is the height of
the SPP, and M is the number of staircases. The correspond-
ing theoretical SPP topological charge is l ¼ Δnh∕λ.

However, in practical applications, multistaircase SPPs
are commonly applied. Therefore, the height exhibits the
characteristic of a stepped spiral growth with an increase
in the azimuth angle, and the incident beam will be subjected
to the corresponding phase modulation.12 In this scheme, an
SPP withM staircases is used to generate a vortex beam, and
the transfer function of the SPP is as follows:12
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where Tðr; θÞ is the phase transfer function of the phase plate
and circlðr∕RÞ is the aperture function. The independent var-
iable r∕R has a value ranging from zero to infinity. Inside
the aperture hole, r∕R takes the value 1, whereas outside the
aperture hole, it takes the value 0. HereHðθÞ is the step phase
function that is obtained by compressing the horizontal axis
of the ceiling function ceilðMθ∕2πÞ. It behaves as θ obtains
M discrete function values when taking values inM different
intervals. By extending the domain of θ from ½0; 2π� to
ð−∞;þ∞Þ, the corresponding HðθÞ can be expanded by the
Fourier expansion method1,2 such that an infinitely expanded
phase transfer function can be obtained:
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where Cp is the coefficient of the p’th item of the expansion.
If ϕm ¼ exp½i2πl − ðp∕MÞm� in Eq. (4) is not equal to 1,

Cp will always be 0. The Cp takes a nonzero value if and
only if ϕm is equal to 1, namely ðl − pÞ∕M ∈ Z.
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Considering the uniform beam and the theory of
Fraunhofer diffraction, the Fraunhofer diffraction field on the
back focal plane can be expressed as
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The nonzero value of the Fraunhofer diffraction field, which
satisfies ðl − pÞ∕M ∈ Z, is
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According to Bessel’s equation,13
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Therefore, it can be derived as
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2.2 Solution of the Finite Hypergeometric Series
Summation Fraunhofer Diffraction Field

The integral of the Bessel function is represented by the
hypergeometric series14 as
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where R denotes the radius of the SPP, and it is equal to the
radius of the diffraction aperture. We consider the Fraunhofer

Fig. 1 (a) An ideal continuous surface SPP and (b) a multistaircase
SPP with M ¼ 16.
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diffraction field of a uniform beam incident on an ideal con-
tinuous surface SPP (the ideal condition), and the diffraction
is described as14
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where 1F2 is a hypergeometric function.
According to the relationship between,15

EQ-TARGET;temp:intralink-;e012;63;623J−pðxÞ ¼ ð−1ÞnJpðxÞ: (12)

Considering a multistaircase SPP with M staircases, the
Fraunhofer diffraction field of a uniform beam can be
described as the summation of each component field, which
corresponds to the Fourier expansion
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where Z1 > 0, and Z2 ¼ −Z1. Here Z1 and Z2 are defined as
the number of the nonzero positive and negative terms,
respectively. For example, in the case where Z1 ¼ 4, the sum
of the terms with p ¼ l, l�M, l� 2M, l� 3M, and l� 4M
are chosen. Therefore, Z1 and Z2 represent the approxima-
tion quality of the Fourier expansion method.

The Fraunhofer diffraction field of the more practical sit-
uation of the Laguerre–Gaussian (LG) beam is16,17

EQ-TARGET;temp:intralink-;e014;63;306

Eðρ;θ;fÞ ¼ iw0

wf
Al;0

� ffiffiffi
2

p �
lΓ½1þðlþ lþpÞ∕2�

Γðlþpþ 1Þ

× exp

�
−iðlþpÞ

�
θ−

π

2

��
exp

�
−
ρ2

w2
f

��
ρ

wf

�
lþp

×F

�
p
2
; lþpþ 1;

�
ρ

wf

�
2
�
; wf ¼ λf∕πw0;

(14)

where w0 denotes the waist of the beam, and it is equal to
the radius of the diffraction aperture. Here Fð·; ·; ·Þ is the
Kummer’s function and p is the radial mode index.18

Similar to Eq. (11) and considering the case of the LG beam,
the Fraunhofer diffraction field can be described using the
unilateral Fourier expansion as
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where l ¼ 1þ kM, k ¼ 0; 1; 2; · · · .
Finally, the intensity profile of the above-mentioned fields

can be obtained using

EQ-TARGET;temp:intralink-;e016;326;603Iðρ; fÞ ¼ Iðρ; θ; fÞ ¼ jEðρ; θ; fÞj2: (16)

The intensity profile of the optical vortices generated by mul-
tistaircase SPPs is essential for applications such as optical
manipulation and free-space optical communication based
on OAM. In a previous study, multistaircase SPPs were used
to generate vortex phases and provided a reference for ana-
lyzing intensity profiles.19 In this study, the rule of the error
due to the multistaircase is valued by the error function

EQ-TARGET;temp:intralink-;e017;326;494ferror ¼ 1 − ½sin c2ð1∕xÞ�: (17)

Here x ¼ M∕l. According to Eqs. (3) and (4), the compo-
nents of the optical vortex generated by the multistaircase
SPP can be divided into two parts: the useful component
with p ¼ l and the error components with p ≠ l. Thus, the
error function ferror represents the power ratio of the error
components to the whole components (sum of the useful
components and the error components). The ferror has been
calculated as shown in Fig. 2. As shown, it reduces sharply
and monotonically with the increase of x ¼ M∕l in the
interval ½1;þ∞Þ. Practically, M∕l is always >1. Thus, con-
sidering the power on the useful component and the error
components, the rule of the error can be quantified.

Fig. 2 The error function for the situation of the multistaircase SPPs
with different M∕l .
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3 Results and Analysis
By setting the wavelength of the incident beam λ to 633 nm,
the focal length of the focusing lens f to 20 cm, the radius
of the diffraction aperture ðR; w0Þ to 0.5 cm, and the radial
mode index p to 0,18 the intensity profile of the Fraunhofer
diffraction fields was simulated according to Eqs. (13)–(16).
In the simulations, three key parameters were discussed
under the conditions of a uniform beam and an LG beam,
as shown in Figs. 3–5. These parameters were the approxi-
mation quality Z1 of the Fourier expansion method, the
intrinsic topological charge l, and the number of the stair-
cases M. In addition, the radial intensities I0 of the
Fraunhofer diffraction field, generated by the ideal continu-
ous surface SPPs, were simulated for comparison, as shown
in Figs. 4 and 5.

Figure 3 presents the radial intensity profile of the
Fraunhofer diffraction field, based on Eqs. (13) and (15),
under the conditions of the uniform beam with l ¼ 1,M ¼ 4,
and Z1 ¼ 0, 1, 2, and 3 and the LG beam with l ¼ 1,M ¼ 4,
and Z1 ¼ 0, 1, 2, 3, and 4. In this case, I_Z1 ¼ n and n ¼ 0,
1, 2, 3, and 4 indicate the intensity profile of the Fraunhofer
diffraction field of the vortex beams generated by the multi-
staircase SPPs. Here n is the value of Z1. Therefore, n rep-
resents the accuracy of the finite hypergeometric series
summation in Eqs. (13) and (15).

On comparing the conditions of the uniform beam and the
LG beam, it was observed that, for the condition of the uni-
form beam, the normalized root mean square error (NRMSE)
for the intensity profiles at Z1 ¼ 0, 1, 2, and 3 and that at
Z1 ¼ 1, 2, 3, and 4 is 0.126, 0.029, 0.008, and 8.680e-4,
respectively. This is less than that observed for the condition
of the LG beam, which is 0.357, 0.107, 0.042, and 0.015.
When Z1 was further increased to 5, the intensity profile
of the LG beam in the situation of the multistaircase SPP
mentioned in Eqs. (13)–(16) was approximately identical
to the situation of the ideal continuous surface SPP. In addi-
tion, the intensity profile of the uniform beam under the same
condition was approximately identical to the situation of the

ideal continuous surface SPP when Z1 ¼ 4. This approxi-
mate identity has been proved for the uniform beam and the
LG beam conditions. In the former condition, the NRMSE
between the intensity profile at Z1 ¼ 4 and that at Z1 ¼ 3 is
8.6807e-4, whereas in the latter condition, the NRMSE
between the intensity profile at Z1 ¼ 4 and that at Z1 ¼ 3
is 0.015. Accordingly, as the value of Z1 reached 4, the
approximation of the Fourier expansion was sufficiently pre-
cise. However, the increase in the value of Z1 will result in
additional complexity for the computations. In the simula-
tion, when l and M were set to greater than 1 and 4, respec-
tively, it was found that sufficient accuracy can be obtained
even when Z1 was set to <4. Therefore, for a specific value of
l and M, the value of Z1 should be appropriately set accord-
ing to specific simulation results.

Figure 4 presents the intensity profile for the situation of
the uniform beam. The parameters are set as l ¼ 1, 10, 20,
and 30 and M ¼ 4, 8, 16, 32, 64, 128, 256, and 512. For
example, l1M4 represents the intensity profile with topologi-
cal charge l ¼ 1 and number of the staircases M ¼ 4 in
Figs. 4 and 5. For comparison, the intensity I0 corresponding
to the condition of the ideal continuous surface SPP was also
simulated with the same l as the situation of the multistair-
case SPPs.

As shown in Fig. 4, when l increases, the radius of the
dark core and the sidelobe of the ideal situation I0 also
increase, whereas the intensity of I0 decreases. In the appli-
cation field of optical manipulation, it indicated a larger
manipulation range but a weaker manipulation ability. In
the condition of the multistaircase SPPs, there was a more
significant sidelobe effect in the corresponding intensity
profile, especially in the case of the higher l and lower M,
e.g., l ¼ 20 and M ¼ 32. This severe sidelobe effect results
in negative influence on the applications of the optical
vortex.

In general, the intensity profile was closer to I0 when the
number of staircases M increased. However, the value of M
should also be as low as possible to reduce the complexity

Fig. 3 Radial intensity profiles of the Fraunhofer diffraction field for the situations of the uniform beam:
(a) with different values of Z 1 ¼ 0, 1, 2, and 3 and the LG beams (b) with different values of Z 1 ¼ 0, 1, 2,
3, and 4.
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and difficulty during the manufacturing process. Accord-
ingly, for certain values of l, the corresponding M was
obtained with little difference as compare to the ideal situa-
tion. When l is 1, 10, 20, and 30 and M is 32, 256, 256, and
512, the NRMSEs between the situations l1M32, l10M256,
l20M256, l30M512, and I0 are 0.0143, 0.0142, 0.0445, and
0.0221, respectively. Based on these values, a fine accor-
dance between the conditions of multistaircase SPPs and that
of ideal continuous surface SPPs can be achieved.

Similarly, in Fig. 5, when l is 1,10, 20, and 30 and M is
32, 256, 256, and 512, the NRMSEs between the situations
l1M32, l10M256, l20M256, l30M512, and I0 are 0.0093, 0.0142,
0.0563, and 0.0318 respectively. Though the NRMSE
between the situations l10M256 and I0 is 0.059, which is low,
Fig. 5(b) shows that the sidelobes still exist when M is 128.
To achieve a better result, M should be set to 256. Thus, a
fine accordance between the conditions of multistaircase
SPPs and ideal continuous surface SPP can also be achieved.
Even though it differs from that in the uniform beam condi-
tion, the sidelobe effect was more apparent in the condition

of the LG beam when M was not sufficiently high. Once
the sidelobe effect was suppressed, the difference between
the conditions of the two types of SPPs can be negligible.
Moreover, Figs. 4 and 5 also indicated that, when lwas larger
than 30, M reaches 512 or even higher. This may cause dif-
ficulties during the fabrication.

4 Conclusion
To summarize the study, a Fraunhofer diffraction analysis
based on a finite hypergeometric series summation was
proposed for the optical vortices generated by practically
applied multistaircase SPPs. In practical applications, the
fabrication of multistaircase SPPs should consider accuracy
and complexity and ensure a balance between these two
parameters. As verified by the values of the NRMSE and the
intensity profile, the above-mentioned analysis was capable
of determining the appropriate value for the number of stair-
cases M under the condition of different topological charges
l. The proposed method and its results can provide a

Fig. 4 Radial intensity profiles of the Fraunhofer diffraction field for the situation of the uniform beam with
different ls andMs: (a) l ¼ 1,M ¼ 4, 8, 16, 32, and I0; (b) l ¼ 10,M ¼ 32, 64, 128, 256, and I0; (c) l ¼ 20,
M ¼ 64, 128, 256, and I0; (d) l ¼ 30, M ¼ 64, 128, 256, 512, and I0.
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reference for the manufacturing of multistaircase SPPs with
sufficient accuracy and acceptable complexity.
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