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Abstract. The yybar diagram for Gaussian beam optics is employed to model the behavior of an interferometer
system testing very small radius parts. The model was developed to overcome the limitations and known incon-
sistencies of a paraxial optics representation used to evaluate a calibration method for testing cylindrical wave
optics using a fiber reference test. Gaussian beam analysis inherently contains physical optics conditions, and
the yybar diagram method provides both an intuitive and powerful framework to generate analytical solutions.
Particularly, we show how to model an interferometric test from a Fizeau transmission sphere (TS), to a small
test ball and back to the TS, and yield test ball radius limits as a function of the test wavelength and TS F∕#.
A computation of error estimates for measuring the radius of curvature of the test balls is also presented. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.58.9.095104]
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1 Introduction
The fiber reference test employs a specially prepared reflec-
tive coated optical fiber as the reference surface for an
interferometric test that employs or results in a cylindrical
wave.1–5 A previous paper presented the experimental results
of the alignment sensitivities of the fiber reference test when
employing a proposed new method for absolute calibration
of cylindrical wave metrology.6 However, in the analysis,
paraxial optics methods were employed, which, when inves-
tigating the behavior of the converging cylindrical beam very
near focus and interacting with a reflecting surface of a small
radius (<0.1 mm) are insufficient to describe the physical sit-
uation; at cat’s eye position, the wavefront does not have a
radius of curvature of zero and it was uncertain whether the
beam would even have a null position where the wavefront
curvature matched the fiber surface curvature. In an effort
to improve this analysis, an analytically tractable technique
that employed physical optics was sought. The result was to
employ Gaussian beam optics to utilize the yybar diagram
method of laser beam representation to perform the analysis.
This paper presents the approach and some readily deduced
characteristics of interferometrically testing small radius
parts. The analysis, presented here assuming rotational
symmetry, yields a relationship that defines the boundary
between conditions where the fiber test may yield one or two
separate positions where the small radius reference surface
will produce null fringes depending on the test wavelength,
the convergence of the test beam, which defines the size of
the waist it would form, and the radius of the test surface.
This paper begins by briefly describing the yybar diagram,
focusing on the properties of specific use with regards to
Gaussian beam analysis used in this paper. The geometry and
goals of the experiment are then described, and the yybar
diagram is used to derive the results. The paper concludes

with a brief analysis showing the impact on the well-under-
stood radius test and a description of subsequent work to
follow.

2 Simple Physical Methods

2.1 yybar Diagram

The yybar diagram7,8 was developed as a graphical represen-
tation of geometrical paraxial optics by Delano. One plots
the paraxial chief (y) and marginal (y) ray heights at each
surface as they are sequentially encountered through the opti-
cal system. From the plot, one can visually infer much infor-
mation about the system and the individual components that
form it, and there are simple algebraic equations that allow
for precise numerical evaluations of the system (Fig. 1).

2.2 Modeling Gaussian Beams with the yybar
Diagram

The yybar method was first applied to laser beam propaga-
tion by Kessler and Shack.9 To make the correspondence,
consider that a Gaussian beam can be represented by two
rays; a divergence ray and a waist ray (Fig. 2), both of which
follow all the standard paraxial ray optics relations for refrac-
tion and translation.

We arbitrarily define the height of the waist ray as y and
the height of the divergence ray as y and plot the result
(Fig. 3).

In the same way that paraxial optics parameters can be
inferred graphically from the yybar diagram so can Gaussian
beam parameters. A primary one is the location of the beam
waist. In Fig. 3, the red dashed line represents the propagat-
ing Gaussian beam. The beam waist is located where y ¼ 0,
which is also where the line is closest to the yybar origin.
The beam waist size, wo, is defined by the smallest distance
from the line to the yybar diagram origin. Or, the beam waist
is located where the line is tangent to a circle centered on
the origin, and its size is the radius of the circle.
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There are also a number of simple relations that can be
used to compute various parameters for the propagating
beam. First, the beam size can be computed at any point
along the propagating beam using the following equation:

EQ-TARGET;temp:intralink-;e001;326;606w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ y2

q
: (1)

Distances between two points, ðyo; yoÞ and ðy1; y1Þ,
along a segment defining the propagating beam is calculated
using the following equation:

EQ-TARGET;temp:intralink-;e002;326;545t ¼ 1

L

���� yo yo
y1 y1

����; (2)

where L is the LaGrange invariant, which, for the laser beam
propagation model, is computed as

EQ-TARGET;temp:intralink-;e003;326;480L ¼ λ

π
¼ nyu − nyu; (3)

where λ is the laser wavelength and, when divided by π, sets
the value of L.9 As also shown in Eq. (3), L is related to the
barred and unbarred values as with geometrical optics, where
u and u are the ray angles for two rays. The radius of cur-
vature of the beam’s wavefront in yybar diagram is given by

EQ-TARGET;temp:intralink-;e004;326;385Rðy; y; u; uÞ ¼ y2 þ y2

y uþyu
: (4)

Note that Eqs. (2) and (3) are identical and similar,
respectively, compared to those used in the yybar diagram
for paraxial optics. As an example, RðyÞ and wðyÞ for
a propagating Gaussian beam in vacuum of λ ¼ 632.8 nm,
wo ¼ 0.0031 mm, and represented as in Fig. 3 are calculated
and plotted in Fig. 4. To compute, RðyÞ requires u and u.
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Chief ray 
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Stop
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Object ImageImage

Lens
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y
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Fig. 1 (a) Marginal and chief rays given a simple lens with the stop near the FFP. (b) The yybar diagram
for the same lens system.

z=0

z

R(z)
w(z )

Waist ray

Divergence ray

wo

Fig. 2 Gaussian beam 1∕e2 point curves shown near waist, with
divergence and waist rays indicated.

y (waist ray)

Fig. 3 A yybar diagram, red dashed line, for the propagating beam in
Fig. 2, Note that line is tangent to blue circle of radius wo.

Fig. 4 (a) The beam width, wðyÞ, through the waist and (b) radius of curvature, RðyÞ, up to the waist for
the Gaussian beam in Fig. 3.
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We choose to define the beam from the transmission sphere
(TS) to have y ¼ wo and u ¼ 0 (Fig. 3) so from Eq. (3),
u ¼ L

y ¼ λ
πwo. The plots for the Gaussian beam size and radius

of curvature, Fig. 4, should be recognizable.10 y is directly
related to propagation distance, z, through Eq. (2) yielding
z ¼ πwoy

λ . We note here that, throughout this paper, examples
are based on a red HeNe laser system with a 100-mm diam-
eter F∕7.6 TS, which we define to have wo ¼ 0.0031 mm at
its focus.

One final critical difference between the yybar represen-
tation of propagating laser beams and paraxial optics is that
the meaning of the yybar diagram for laser beam propagation
is unchanged when the traces are rotated about the origin.
Figure 5 shows two representations of the same propagating
beam with a beam waist wo. Numerically, they only differ in
how the two rays are defined; Fig. 5(a) flips the ray definition
set in Fig. 3, and in Fig. 5(b), neither y nor y is the waist or
divergence ray.

3 Interferometric Test Modeled with the yybar
Diagram

3.1 Geometry of the Interferometric Test

The interferometer configuration analyzed in this paper
consists of a Fizeau system from TS to the reference sphere
under test, a small reflective sphere of radius rb, where it
reflects and then returns to the TS (Fig. 6). Position of the
ball, z, is defined by the location of the convex ball surface
relative to the beam waist produced by the TS, where z ¼ 0
when they are coincident. Since the ball surface has power,
the reflected Gaussian beammay have a different divergence,
waist size, and waist location.

3.2 Analysis of Interferometric Test

The goal of this model is to analyze where the test ball must
be to yield null fringes. Logically, this will occur if the
reflected beam re-entering the TS meets two constraints: it
has the same beam size and the same radius of curvature that
the beam had when it initially exited the TS, wTS ¼ wTS

0 and
RðzTSÞ ¼ RðzTSÞ 0 where the primes indicate the beam after
reflection from the reference ball. If this condition is met, one
can also state that the reflected beam waist size and position
must be identical to the initial beam waist size and position
for the beam from the TS, wo ¼ wo 0 and wð0Þ 0 ¼ wo. For
simplicity, we again define the beam from the TS as a hori-
zontal line of height wo. The TS beam, red lines in Fig. 6,
interacts with the test surface at some position z measured
from the incident beam waist, which is located at ðy; yÞ ¼
ð0; woÞ. Since the divergence and waist rays still follow the
laws of paraxial optics, the waist ray, u ¼ 0, will virtually
go to a height of zero at the front focal point (FFP) of the
convex ball a distance −rb

2
from the reflecting surface.

Since we also know u, the value of y at the FFP is

EQ-TARGET;temp:intralink-;e005;326;368yF ¼
�
−rb
2

��
λ

πwo

�
¼

�
−rbλ
2πwo

�
; (5)

which is independent of where the reference ball is located in
z. We denote the test ball position as ðyp; ypÞ ¼ ðyp; woÞ.
Thus, the segment that represents the reflected beam is along
a line that passes through ðyF; 0Þ and the reference ball loca-
tion, ðyp; woÞ. As described above, to find the locations for
the test ball that produces a null fringe requires the reflected
beam to have the identical beam waist size and location as
the beam from the TS.

wo
wo

(a) (b)

Fig. 5 Different yybar representations of the same Gaussian beam of waist radius of wo.

z

z<0 

z=0

Fizeau interferometer

Transmission 
sphere (TS)

Test surface

Fig. 6 The interferometer system being modeled, from TS to test ball back to TS.
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To ensure the first constraint, the reflected beam must be
on a line that is tangent to the centered circle of radius wo.
After some algebra, this results in the following equations
for deriving two yp, values:

EQ-TARGET;temp:intralink-;e006;63;506ypn ¼ yF −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yF2 − wo2

q
; (6)

EQ-TARGET;temp:intralink-;e007;63;455ypc ¼ yF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yF2 − wo2

q
; (7)

where ypn ¼ ypc ¼ wo (Fig. 7).
These are the well-known null and cat’s eye positions—

ðypn; ypnÞ and ðypc; ypcÞ.11 But at this point, we have only
met one of the requirements stated above: wo ¼ wo 0. We
prove that the other condition is automatically met based
on the properties of the yybar diagram. Since the reflected
and incident beams are both represented by lines tangent
to the same circle, and the test ball position is located at the
two lines’ intersection, and the initial and reflected waists are
located at the tangent points of the lines, the area of triangle
[(0, 0), ð0; woÞ, ðyp; woÞ] is identical to the area of triangle
[(0, 0), ðywo; yw0Þ, ðyp; woÞ] (Fig. 8). In a yybar diagram, this
means the distances are identical and therefore the incident
and reflected beam waists are located at the same position;
both requirements for null fringes are met. The identical
waist positions can also be derived algebraically using

Eq. (2), computing the distance from the TS to the ball, and
then from the ball back to the TS, or the distances from the
ball to the incident and reflected waists.

Also note that Eqs. (6) and (7) reveal that when yF ¼ wo,
there is only one solution. We define this as the minimum test
ball size, using Eq. (5) and yF ¼ wo,

EQ-TARGET;temp:intralink-;e008;326;686rb min ¼ 2πw02

λ
: (8)

When yF < wo, Eqs. (6) and (7) yield imaginary values
for yp; there is no solution for this case. This is readily
observed from the yybar diagram since any beam represented
by a line that passes through a point inside the circle of radius
wo cannot have a beam waist size of wo, thus the two con-
straints cannot be met. We must redefine what constraints
should be met to achieve a null fringe when the ball radius
is below the minimum defined by Eq. (8). One approach is
that only the radius of curvature of the reflected beam at the
TS needs to match the radius of curvature of the initial beam
at the TS. By equating the distances from the TS to the ball,
and from the ball back to the TS, and then also making
Eq. (4) match for the beam first leaving and then entering
the TS after reflection, we find that the solution is that the
reflected beam is represented by a ray parallel to the y axis,
or y ¼ −rb min

2
. Note that now, the divergence and waist rays

are defined by y and y, respectively. The location of the
reflected TS is such that the beam size (w 0) is far larger than
when the beam exited the TS, so the contrast of the fringes
will be lower. This is again evident based on the area of
triangles; the distance from the TS to the ball is measured
along the line y ¼ wo, but back to TS 0 along y ¼ x, where
x < wo. To match areas, yts 0 ∼ yts × wo

x , and since both yts 0

and yts are far larger than yts ¼ wo and yts 0 ¼ x, respec-
tively, wts ∼ yts and wts

0 ∼ yts 0. So, if yF ¼ wo
2
, wts

0 ∼ 2wts.
One final point to note is that this analysis shows how the
accuracy of the standard method for determining the radius
of curvature of a surface, measuring the distance between
the null and cat’s eye positions,12 rapidly degrades as the
radius approaches the minimum. For example, Fig. 9 is
a plot of the absolute percent error in logarithmic scale
ð100½actual−measured

actual
�Þ given the F∕7.6 TS used throughout this

paper.

Fig. 7 The yybar diagram for both the null and cat’s eye positions,
from TS to test ball back to TS’.

(b)(a)

Fig. 8 Area is proportional to distance in a yybar diagram, so the triangles show the distance from the ball
surface to the incident or reflected waist is identical for the (a) null or (b) cat’s eye position; the reflected
and incident waists are coincident.
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For reference, radii of 2, 0.6, 0.2, and 0.093 mm yield
percent errors of 0.1%, 1%, 10%, and 100%, respectively.

4 Conclusion
This paper has presented a physical optics-based analysis
of an interferometric test of a small radius test part. The
yybar diagram method for Gaussian beams provides simple,
visually evident results as well as analytical relations. The
method has found tractable results: defining a minimum sur-
face radius with only one null fringe position and determin-
ing measurement error when finding radius of curvature with
the null/ cat’s eye test, given a test wavelength and TS F∕#.
Using this framework, a subsequent paper will show how
calibration of TSs using small radius reference spheres and
the cylindrical nulls using a fiber reference can be modeled,
including a detailed analysis of the misalignment errors in
these tests.
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