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Abstract. The use of a physical guard ring in CMOS single-photon avalanche diodes (SPADs)
based on nþ/(deep)p-well and pþ/(deep)n-well structures is a common solution to control the
electric field of the SPADs periphery and prevent the premature lateral breakdown. However, this
leads to a decrease of the detection efficiency, i.e., the fill-factor, especially when the SPADs size
is reduced. Our paper presents an experimental and simulation study on replacing the physical
guard ring by a virtual guard ring to improve the fill-factor and the scalability of a nþ∕p-well
SPAD implemented in 0.35-μm pin-photodiode CMOS technology. Accordingly, the optimiza-
tion of the virtual guard ring and its superiority at downscaling are discussed, and the SPAD
scalability in size with respect to the fill-factor is quantified in this technology. © The Authors.
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1 Introduction

Detecting weak optical signals is critical to a variety of opto-electronic applications, including
time-of-flight sensors, quantum cryptography, optical wireless communication, and optical
tomography in medical diagnostics. This makes the single-photon avalanche diode (SPAD)
an attractive candidate as it has a sensitivity level of detecting single photons.1–4 The SPAD
operation can be thought as a simple diode with a reverse bias above its breakdown voltage
and therefore, an absorbed photon generates an electron–hole pair, which might gain enough
energy to create a self-sustaining avalanche due to a strong electric field formed in a multipli-
cation zone. The self-sustaining avalanche has to be stopped by reducing the voltage to below
breakdown by a quenching circuit (active or passive) and then needs to be recovered (reset) for
the next detection.

Si-CMOS SPADs based on nþ/(deep)p-well and pþ/(deep)n-well are commonly used struc-
tures with the capability to be integrated with circuitry.5–8 In these structures, a physical guard
ring was used to avoid a premature edge breakdown due to locally concentrated electric field at
the edge of the junction. A variety of different physical guard rings, including diffusion guard
ring,9 trench isolation guard ring (STI),10 and low-doped guard ring,11,12 have been used to
decrease the peripheral electric field at the edge of the junction. Nevertheless, the existence
of the physical guard ring degrades the fill-factor defined as the ratio of the photo-sensitive area
(active area) to the total device area. As it is shown here, this degradation is more significant
when the SPAD is downsized and the dimensions of the guard ring are comparable to the dimen-
sions of the photo-sensitive area.

To address this issue, a virtual guard ring has been employed in pþ∕n-well SAPDs to achieve
smaller structures.13–16 In Refs. 13 and 16, the virtual guard ring is exploited between active area
and STI to separate the edge of the STI from the avalanche region to reduce the dark count rate
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(DCR) induced by STI interface traps, which limits the fill-factor. However, in SPADs with a
deep multiplication region, the combination of the virtual guard ring and STI is efficient in down-
sizing the SPAD as studied in Refs. 15, 17, and 18. Reference 19 presents different deep virtual
guard ring structures to be used in SPADs with a deeper multiplication region in pþ/deep n-well
CMOS SPADs. Here, we employ this concept in the nþ/p-well CMOS SPAD structure with
separate thick absorption and multiplication zones, which is efficient for longer wavelengths
for the first time. The effect of a virtual guard ring replacing a physical guard ring on the
built-in electric field and the fill-factor of the SPAD is studied. Furthermore, we demonstrate
that the lateral electric field at the edge of the active area decreases the effective active area due to
the deviation of the carrier path from their pure vertical trajectory toward the boundary out of the
multiplication region. To the best of our knowledge, the previous studies have not considered this
effect; however, it is critical in scaling down our SPAD. Here, the Geiger mode simulation is
performed to investigate the electric field behavior inside the structure and evaluate the effective
active area. Furthermore, we measure experimentally the radial dependency of the photon detec-
tion probability (PDP) defined as the probability that an incident photon is detected to determine
the active area (i.e., the fill-factor). In addition, the effect of the virtual guard ring on the parasitic
noises, including the DCR and afterpulsing probability (APP), and the breakdown voltage (Vbr)
as the key performance factors of the SPAD are studied.

A good agreement between the simulation and the experimental results is achieved for large
SPADs of both structures. Then, the structure of a smaller SPAD with a virtual guard ring within
the same CMOS technology is designed based on simulations and is fabricated, accordingly.

The remainder of the paper is organized as follows. In Sec. 2, the structure of the SPAD with
physical and virtual guard rings is described. Section 3 compares the simulation and experimen-
tal results for larger SPAD structures of both guard ring types. Section 4 studies the downscaling
effect on the fill-factor for both SPAD structures and finally, the paper is concluded in Sec. 5.

2 Device Structure and Measurement Setup

2.1 Device Structure

Figure 1 shows the cross-sections and the top view of the circular SPAD structures fabricated in
the 0.35-μm modular sensor technology platform (XO035) of X-FAB semiconductor foundries.
Both SPADs include a shallow nþ and p-well regions formed on a p-doped epitaxial layer (p-epi)
with a doping concentration of ∼2 × 1013 1∕cm3 and a thickness of ∼12 μm. In both structures,
the diameter of the nþ and p-well are 90 and 80 μm, respectively.

When the SPAD is reversely biased above its breakdown voltage (operating in Geiger mode),
a strong electric field is established at the nþ/p-well junction that serves as an avalanche

Fig. 1 Schematic cross-section (not to scale) of CMOS SPADs based on nþ/p-well structure with
(a) the physical guard ring (SPAD1) and (b) the virtual guard ring (SPAD2). (c) Top view of these
SPADs (there is no difference in the chip photos of both SPADs visible).
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multiplication zone. At this voltage level, the depletion region extends down to the substrate,
which means the whole epitaxial layer is depleted. Accordingly, the p-epi layer serves as a thick
absorption zone, which makes the SPADs efficient to detect long wavelengths to be used in
optical wireless communication systems and LIDAR/ToF sensor applications.

The only difference between these two SPAD structures is the form of the guard ring, which
is necessary to avoid the curvature effect of the p–n junction and the formation of higher electric
field at the edges resulting in a local edge breakdown. In SPAD1 [Fig. 1(a)], an n-well region
(which is much lower doped than the n+ region) with a width of ∼5 μm (here, after called physi-
cal guard ring) is present from the edge of the p-well to the edge of the nþ region as it has been
used in our previous SPADs.3,20 In SPAD2 [Fig. 1(b)], the guard ring is made virtually as the
diameter of p-well is less than that of the nþ region so that the edge of nþ region is surrounded by
the low doped p-epi. Therefore, the electric field at the diode junction of nþ/p-well in the central
region (including, the whole p-well) is higher than the peripheral electric field at the edges, and
accordingly the central region reaches the breakdown voltage point earlier. As a result, the edge
breakdown is avoided and the multiplication region is confined over the nþ/p-well junction.
However, the use of these guard rings influences the built-in electric field and reduces the effec-
tive active area. A closer look into this effect using TCAD simulations and experimental mea-
surements is presented in the following section.

2.2 Measurement Setup

The measurement setup is illustrated in Fig. 2. As laser source, a fiber coupled to a laser diode
from Thorlabs is used (LPS-PM635-FC). We use two optical power meters in our setup. A fiber
splitter is used to split up the light to feed it to the first optical power meter from Thorlabs for
power monitoring (PMref ) and to the fiber that feeds the light either to the device under test
(DUT) or to the detector of a second power meter PMcal. With attenuator Att2, the ratio between
the optical power is set between the fiber that feeds the light to the DUTand the fiber that leads to
the power monitoring. This ratio is set in the range of 105. For calibrating this ratio, the second
power meter PMcal is used that has a detector placed inside the dark box where the DUT is
mounted. This high ratio guarantees that we get sufficient optical power at the power monitoring,
when the photon rate at the DUT is set to 10 × 106 photons∕s. Attenuator Att1 is used after
calibrating the power ratio to reduce the photon rate at the SPAD. This light intensity is suffi-
ciently low that any saturation and pile up effects are not observed. The setup is controlled by a
PXI system. A digitizer (NI PXIe-5162) reads the output signals of the active quenching circuit
(explained in detail in Ref. 20) and streams the data directly to an FPGA card (NI PXIe-7972R),

Fig. 2 Schematic of the measurement setup.
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where the pulse statistics such as count rate and after pulsing probability are extracted. The active
quenching circuit is supplied by an SMU card (NI PXIe-4145), and the substrate voltage is gen-
erated by a Keysight electrometer (B2987). The DUT’s temperature is kept constant at 25°C by
means of a thermo electric cooler. An XYZ-stage from Thorlabs built from three linear stages
(KMTS50E/M) positions the fiber over the DUT and performs the XY sweep. The minimum
achievable incremental movement corresponds to 50 nm and the bidirectional repeatability
is 1.6 μm.

3 Comparison of Simulation and Experimental Results

To investigate the effect of the guard ring on the distribution of the electric field inside the SPAD,
TCAD simulations are performed for both SPADs structures shown in Fig. 1. The structures are
defined based on the SPADs’ layouts and the process design kit information as well as the doping
profiles (confidential data) provided by the foundry, and according to the cylindrically symmet-
ric geometry of the SPADs, two-dimensional (2D) simulations are carried out along one diam-
eter. The key parameters and the corresponding values used in the TCAD simulations are shown
in Table 1.

Figure 3 shows the built-in electric field at an excess bias voltage of 6.6 Vobtained by using
the Geiger mode device simulation feature of SILVACOAtlas.22 The 2D plots of the electric field
distribution inside the two structures with the physical and virtual guard rings are shown in
Figs. 3(a) and 3(b), respectively. Both SPADs show a similar electric filed profile (direction
and strength) in the central area where the guard ring has no influence on the electric field.
Therefore, in both structures, a vertical electric field [along the direction x as shown in Fig. 2(c)]
is formed at the center of the device (r ¼ 0) with a very high strength (700 kV∕cm) at the inter-
face of nþ/p-well (multiplication region) and a lower amplitude (8 kV∕cm) over the depletion
region (i.e., absorption region), which extends down to the substrate. As a result, when a photon
is absorbed in the depletion region, the generated electron and the hole are promptly separated by
the electric field (in opposite directions) and then, the minority carrier is accelerated toward the
multiplication region.

Inside the multiplication zone, the strength of the electric field is significantly reduced when
moving away from A toward the guard rings as is shown in Fig. 3(d). As a result, the avalanche
multiplication region is limited to the junction of nþ/p-well where the electric field is very high
and surrounded by the guard ring, and thus, the edge breakdown is avoided at the cost of a
reduced active area. It can be seen from a lateral cross-section of the electric field through
A − A 0 (x ¼ 0.5 μm), the high-electric field in SPAD1 starts falling down (at ∼37 μm) earlier
than in SPAD2 (at ∼39 μm), which makes the multiplication region smaller. In addition, the
r-component (i.e., the lateral component) of the electric field at the edge (i.e., the end of p-well)

Table 1 Key parameters used in the TCAD simulation performed by
ATLAS.

Parameter Discription Value

An Impact ionization constants for electron21 7.03 × 105 1∕cm

En_crit 1.231 × 106 V∕cm

Ap Impact ionization constants for hole21 1.58 × 106 1∕cm

Ep_crit 2.036 × 106 V∕cm

taun Electron life time 200 μs

taup Hole life time 200 μs

Le Electron diffusion length 270 μm

Lh Hole diffusion length 90 μm
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grows due to the formation of a lateral p-well/n-well junction and a p-well/p-epi transition in
SPAD1 and SPAD2, respectively, as shown in Figs. 3(e) and 3(f). As a result, the carriers
photo-generated at the border of the active area [below A–A 0, see also Figs. 3(a) and 3(b)] are
exposed to a non-vertical electric field, which deviates the generated minority carriers (i.e., the
electrons) from their pure vertical trajectory toward the lower-electric field region (out of the
multiplication region). Therefore, the active area covers a smaller area as compared to the area
covered by the nþ/p-well junction in the layout and can be named as the effective active area in
contrast to the physical active area defined by the layout dimensions.

To visualize the effective active area inside these structures, the avalanche triggering prob-
ability (ATP) is obtained by TCAD simulation. ATP is defined as the probability that either a
photo-generated electron or a hole (as two independent events) at a position x initiates a self-
sustaining avalanche event, depending on the impact ionization coefficients and the electric field.
More details and how ATP leads to PDP are explained in our recent paper.23 Figure 4 illustrates a
2D plot of the ATP for both structures. Here, in spite of the fact that the avalanche process
happens only in the multiplication region, a carrier generated outside the multiplication region
can reach this area and trigger an avalanche event. Therefore, the ATP corresponding to the
avalanche triggering probability (for a self-sustaining avalanche) of the minority carries (i.e.,
electrons) below the multiplication zone extends to the p-well and p-epi regions and shows
a maximum value (at the central region). In fact, it shows a fixed (maximum) value over this
region (r < 20.5 μm and r < 27.5 μm, respectively) as we can assume a negligible recombina-
tion rate due to a strong drift toward the multiplication region. This means that an electron gen-
erated at any x (r < 20.5 μm and r < 27.5 μm, respectively) drifts toward the cathode and will
flow through the whole multiplication region. Similarly, for the area above the multiplication
region (nþ layer), a minority carrier (i.e., a hole) can reach the multiplication region and trigger
an avalanche event.

Figure 4 demonstrates that a larger effective active area is obtained with the virtual guard ring
compared to the physical guard ring. The difference between the radii of the effective active areas
in the two structures is larger than the ∼2 to 3 μm predicted by Fig. 3(d) and is around 7 μm. This
is due to the lateral electric field from the lateral diode (p-well/n-well) in SPAD1, which is
stronger than that of the p-well/p-epi transition in SPAD2, and therefore, it has a stronger effect
on the trajectory of the carriers toward the cathode and results in a narrower region with a high
ATP. This proves an improvement of around 45% and accordingly, for the same diameter of
116 μm the fill-factors of 23% and 34% are obtained for SPAD1 and SPAD2 leading to the
photon detection efficiencies (PDEs, PDE ¼ PDP times fill-factor) of 7.75% and 11.46%,
respectively.

Fig. 3 2D plots of the electric field obtained by TCAD simulation for (a) SPAD1 and (b) SPAD2 in
logarithmic scale. Arrows indicate the local electric field direction. (c) A vertical cross-section of the
electric field at the center (r ¼ 0) for both SPAD1 and SPAD2. (d) A lateral cross-section of the
electric field through A–A 0 at x ¼ 0.5 μm in SPAD1 and SPAD2. 2D plots of the r -component of
the electric field for (e) SPAD1 and (f) SPAD2 in logarithmic scale.
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To experimentally characterize the effective active area, the radial dependency of the PDP is
measured at a wavelength of 635 nm. Figure 5(a) shows the measured PDPs for both structures
as a function of the distance between the center of the SPAD and the center of the light source.
Furthermore, ATPs (1D cross-section at x ¼ 5 μm) obtained by simulation are added to this
figure. It is worth mentioning that the ATP is independent of the wavelength; however, here
we plot it for a cross-section depth equal to the penetration depth (σ) at λ ¼ 635 nm. In fact,
σ is a function of λ and defines the depth at which the optical power decays to 1∕e of its value at
the silicon surface. The result verifies the expected difference between the diameters of the effec-
tive active area of the two structures predicted by the simulation. Furthermore, the PDP curves
show a smaller slope to zero as compared to the ATP curves because due to the actual beam
widths the PDP is averaged over the light spot on the SPAD.

Figure 5(b) shows the reverse current in dependence on reverse voltage [i.e., the IðVÞ curves]
for SPAD1 and SPAD2. As it is shown, the breakdown voltage of SPAD1 is lower than that of
SPAD2, which originates from the difference in the electric field distribution in the two SPADs.
Table 2 shows a comparison of the parasitic noises at an excess bias of 6.6 V and of the break-
down voltages of SPAD1 and SPAD2. The breakdown voltage is read as the reverse voltage for a

Fig. 5 (a) Measured radial PDPs and simulated 1D cross-sections of the ATP at an excess bias
voltage of 6.6 V. (b) Measured IðV Þ curves.

Fig. 4 2D plots of the ATP at an excess bias voltage of 6.6 V for (a) SPAD1 and (b) SPAD2.
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reverse current of 10 μA. It can be seen that the DCR and APP of SPAD2 are slightly higher than
that of SPAD1, which is due to the fact that SPAD2 has a larger effective active area compared to
SPAD1. Therefore, one can say that employing the virtual guard ring in this structure is efficient
to improve the fill-factor while retaining its efficiency from the other performance factors point
of view.

4 SPAD Scalability with the Virtual Guard Ring

Maintaining the overall sensitivity and providing an acceptable fill-factor is a challenge when the
SPAD is scaled-down. Therefore, the fill-factor enhancement using the virtual guard ring
becomes more significant in smaller SPADs. Here, we study the effect of the guard ring on the
fill-factor of a SPAD with a diameter of 48 μm and the nþ diameter of 30 μm. To achieve a
higher fill-factor, the width of the virtual guard ring has to be minimized that the fill-factor
is maximized but still the edge breakdown is not happening. According to the design rules and
the doping profiles associated with the 0.35-μm CMOS technology, we have obtained a mini-
mum width of around 1 μm for the virtual guard ring using TCAD simulations. In fact, if the
width of the virtual guard ring (i.e., the radius of the nþ minus the radius of the p-well) is smaller
than 1 μm, the electric filed at the edges will be higher than in the center and as a result, the
breakdown occurs at the edge area at a smaller reverse bias voltage and only the edge area of the
diode will contribute to the SPAD operation in Geiger mode. Figure 6 shows this effect for a
virtual guard ring of 0.5 μm where the active area is limited to the edges.

Now, we compare the smaller SPAD (device diameter ¼ 48 μm, nþ diameter ¼ 30 μm) with
the physical guard ring (p-well diameter ¼ 20 μm, n-well width ¼ 5 μm) to the SPAD with
the minimized virtual guard ring (p-well diameter ¼ 28 μm, guard ring width ¼ 1 μm), using
TCAD simulations as shown in Fig. 7. It can be seen that the effective active area of the
SPAD with the physical guard ring is severely degraded and shows a fill-factor of less than
1%, which is not suitable for practical applications. On the other hand, the SPAD with the virtual
guard ring retains its efficiency and provides a much higher fill-factor of around 22% (the radius
of the effective active area is 11.3 μm at the cross section of A–A 0) leading to a PDE of 7.5%,
which can be acceptable for many applications. According to these results, only the SPAD struc-
ture with a diameter of 48 μm and the virtual guard ring of 1 μm was fabricated in 0.35-μm
OPTO-ASIC CMOS technology. This SPAD was characterized through a similar experiment
as it was explained above. Its measured radial PDP at a wavelength of 770 nm and its measured

Table 2 Parasitic noise, breakdown voltage, and the PDE compari-
son of SPAD1 and SPAD2 at an excess bias of 6.6 V.

SPADs DCR APP V br PDE

SPAD1 30.43 kcps 4.25% 25.8 V 7.75%

SPAD2 31.14 kcps 5.29% 24.9 V 11.46%

Fig. 6 2D plot of the ATP for the SPAD with a 0.5-μm virtual guard ring.
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IðVÞ curve are shown in Figs. 7(c) and 7(d), respectively. This SPAD is from a different process
run and its breakdown voltage cannot be compared to those of SPAD1 and SPAD2. For this
SPAD at an excess bias of 6.6 V, DCR and APP are 7.5 kcps and 14.2%, respectively.
Figure 7(c) shows a comparison of the measured radial PDP and the simulated profile of the
ATP at a depth of 5 μm [over A–A 0 as shown in Fig. 7(b)]. As it is mentioned above, the PDP
curve decreases with a smaller slope compared to the ATP curve due to the fact that the measured
PDP at each point is an average over the light spot on the SPAD. Here, a single-mode fiber with
a core diameter of 8 μm was used for scanning the SPAD, which shows a larger difference
between PDP and ATP compared to the result in Fig. 5(a).

To further investigate the scalability of the SPAD structure with virtual guard ring in the
available 0.35-μm CMOS technology, we obtain the ATP for a structure with a diameter of
30 μm using TCAD simulations as is shown in Fig. 7(e). This result suggests that, at this size,
it is possible to achieve a fill-factor of around 7%, which is not appropriate for application where
high sensitivity is critical, e.g., optical receivers based on an array of a few SPADs. However, one
may still consider this as an acceptable fill-factor for other applications, where large arrays con-
sisting of hundreds or thousands of SPADs are used and the fill-factor is more critical. Table 3
shows a comparison of the key performance parameters of the SPAD in this work with those of
previously published SPADs to better highlight the contribution of this work over the state of
the art.

Fig. 7 2D plots of the ATP for the SPADs with a diameter of 48 μm and (a) the physical guard
ring, (b) the virtual guard ring at an excess bias voltage of 6.6 V. (c) The measured radial PDP
and a 1D cross-section of the ATP of the SPAD with the virtual guard ring at the depth of 5 μm and
at an excess bias voltage of 6.6 V. (d) Measured IðV Þ curve of the SPAD with the virtual guard
ring. (e) A 2D plot of the ATP for a 1-μm-virtual-guard-ring SPAD with a diameter of 30 μm
(nþ diameter ¼ 15 μm).

Table 3 Performance comparison of the implemented SPAD with literature.

SPADs PDP at λ ¼ 635 nm DCR (cps/μm2) Diameter Fabrication process

Ref. 15 7.2% at V ex ¼ 2 V 73 at V ex ¼ 2 V 4 μm CMOS 65 nm

Ref. 16 10% at V ex ¼ 3 V 4.7 at V ex ¼ 3 V 30 μm CMOS 180 nm

Ref. 19 9% at V ex ¼ 5 V 8.8 at V ex ¼ 5 V 15 μm —

Ref. 24 15% at V ex ¼ 4 V 16 at V ex ¼ 4 V 12 μm CMOS 180 nm

Ref. 25 15% at V ex ¼ 4 V 2 at V ex ¼ 4 V 20.4 μm CMOS 180 nm

Ref. 26 7% at V ex ¼ 11 V 1.5 at V ex ¼ 11 V — CMOS 180 nm

This work 35% at V ex ¼ 6.6 V 3.2 at V ex ¼ 6.6 V 48 μm CMOS 350 nm
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To compare the performance of different SPADs, one should consider many parameters
including the technology in which the SPAD is implemented, the size of the SPAD, and the
measurement conditions. Nevertheless, as the SPAD presented in this paper is designed to
be used for optical fiber receiver applications, its PDP is significantly larger than that of the
other published results. To have an understandable DCR comparison, we should normalize the
DCR by the SPADs’ area. It is shown that the DCR∕μm2 of the presented SPAD is comparable
with the other published results. Table 3 also includes the diameter of the SPADs to provide an
insight into the size of the SPADs reported in literature. It is worth noting that the availability of
doping profiles and the design rule limitations of the fabrication process play a key role in the
scalability of SPADs. It is clear that advanced, smaller-node technologies offer higher scalability
features. In addition, in technologies where higher doping concentrations are available, smaller
structures can be fabricated. However, comparison of the scalability of different technologies is
out of the scope of this work. According to our result, in the same technology using the same
doping profiles, replacing the physical guard ring by the virtual guard ring can improve the
effective fill-factor of the SPAD.

5 Conclusion

The use of a virtual guard ring is a practical solution to avoid the edge breakdown effect in SPAD
devices and still preserve the fill-factor as an important performance metric. An experimental and
simulation study on the effect of the virtual guard ring on the fill-factor and the scalability of a
n+/p-well SPAD implemented in 0.35-μm CMOS technology is presented. A minimum guard
ring width of 1 μm is obtained using TCAD simulation and is used to design smaller SPADs in
this CMOS technology. A fill-factor of around 22% is achieved for a SPAD with a diameter of
48 μm, and it is shown that the fill-factor decreases to below 7% for a SPAD with the diameter
less than 30 μm. We believe that higher fill-factors at smaller SPAD sizes are achievable only in
more advanced CMOS technologies where doping concentrations are higher.
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