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Abstract

In this communication, we propose a novel method for estimating the aberrations of a
space telescope from phase diversity data. The images recorded by such a telescope can
be degraded by optical aberrations due to design, fabrication or misalignments. Phase
diversity is a technique that allows the estimation of aberrations. The only estimator
found in the relevant literature is based on a joint estimation of the aberrated phase
and the observed object. We recall this approach and study the behavior of this joint
estimator by means of simulations. We propose a novel marginal estimator of the sole
phase. It is obtained by integrating the observed object out of the problem; indeed, this
object is a nuisance parameter in our problem. This reduces drastically the number of
unknown and provides better asymptotic properties. This estimator is implemented and
its properties are validated by simulation. Its performance is equal or even better than
that of the joint estimator for the same computing cost.

1 - INTRODUCTION

The images recorded by a telescope are degraded by aberrations. These aberrations can be due
to atmospheric turbulence and to distortions of the optical system. Whatever their origins,
they lead to phase variations in the pupil plane, which severely reduce the optical transfer
function (OTF). The problem is to estimate the phase of the wavefront to correct the images
from these distortions. Many wavefront sensing techniques have been proposed but few can
be used with extended scenes. One of them is the phase diversity. This technique, first
proposed by Gonsalves[1] in 1978, has been significantly developed during the last ten years.
It has been used successfully by many authors to determine aberrations[19, 2, 3] and also
to restore the quality of images, like solar imaging through turbulence[4, 5]. This technique
uses a low-cost, optically simple wavefront sensor but it requires a numerical processing to
restore the unknowns from the images. The conventional estimation found in the literature is
based on a joint estimation of the aberrations and the observed object. The reconstruction
of these parameters is an ill-posed inverse problem and must be regularized. Several method
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have been proposed, in the literature, to this end. Concerning the aberrations, there is, at
least, an implicit regularization by expanding the phase on a finite linear combination of basis
functions. Furthermore, in the case of imaging through turbulence, a prior on the turbulent
phase is derived from Kolmogorov statistics|[6]. For regularizing the object, several approaches
have been proposed: some authors use a low-pass noise filter[4, 2] | some impose a sieve on
the object[5] and recently a Tikhonov regularization on the object was proposed[8] . All these
solutions require the tuning of regularization parameters, which must be done by hand, in
a joint estimation. When the problem is to estimate the aberrations only, the restoration
of the object is not interesting and because of the choice of regularization parameters, not
easy. Furthermore, in a joint estimation, the ratio of the number of unknowns (aberrations +
object) to the number of data does not tend towards zero so this joint estimation does not have
good asymptotic properties. The aim of this article is to solve these problems by proposing a
robust estimator derived in a Bayesian framework that restores the sole interesting parameters:
the aberrations. It is obtained by integrating the observed object out of the problem. This
novel method is called marginal estimator and is based on a Maximum A Posteriori approach.
This estimator has good asymptotic properties and allows the unsupervised estimation of the
noise variance and of the regularization parameters of the object . The knowledge of these
hyperparameters can be used, afterwards, to perform the object restoration. The outline is as
follows: we begin with the mathematical formulation of the problem, in Section 3 we recall
the usual joint estimation scheme and we present the marginal estimator. In section 4, we
compare the properties and performances of these two estimators for the reconstruction of the
aberrations, by means of simulations.

2 - PROBLEM STATEMENT AND PHASE DIVERSITY PRINCIPLE

In the isoplanatic patch of the telescope, the image is the noisy convolution of the point-spread
function h in the observation plane and the object o:

i(r) = (hx0)(r) + n(r) (1)

where 7 is a two-dimensional vector in the image plane and n is an additive noise. Under near
field approximation, the point-spread function associated with the focused image is given by:

hi(r) = |[FT[P(u). exp(i(u))]|* (2)

where u is a two-dimensional vector in the pupil plane, ¢ is the unknown aberrated phase
function, P is the binary aperture function and F7T denotes the Fourier transform. The
aberrated phase function is expanded on a set of Zernike polynomials[9] .

¢(u) = ZaiZi(u) (3)

Ideally, k£ tends to infinity but in practice £ will be a high number. And in the particular case
of a space telescope, the first polynomials are enough to describe the aberrations (typically
the first twenty). In the following, we will note a = (ay, ..., ax)* where t denotes transposition.
The estimation of the aberrations from only the focused image, does not ensure the uniqueness
of the solution. This indetermination is due to the relationship between the psf and the
aberrated phase: a couple (¢, ¢') exists such that h(¢) = h(¢'). In particular, when the phase
is expanded on the Zernike polynomials, the global sign of the set of a; such that : = 2p
could not be estimated. Phase diversity was proposed to add information and thus remove
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this indetermination. The idea is to collect, at least, one additional image which differs from
the focused one, by a known phase variation. To implement simply this technique, the second
image is taken in a defocused plane (with a known defocused distance), the added phase is
thus quadratic. In the defocused plane:

telescope
\\
' beam splitter

ol “‘/ ‘ \ l focused image
‘«\ |
A\

defocused image

Figure 1: Phase diversity principle

ha(r) = |FT[P(u). exp(i(6(u) + ¢a(u)))]* (4)

where ¢4 is the known diversity phase function.
In practice, data are discrete arrays because of the spatial sampling of the images. Equation
1 takes the form:

i=Ho+n (5)

where H is the Toeplitz matrix corresponding to the convolution by h, and where i, 0 and n
are the discrete forms of the previous variables.

The problem is to estimate the aberration parameters a (the set of a;) from the data (focused
i1 and defocused is images) and the defocused distance, without knowing the object 0. We
begin by recalling the joint estimator, then we will present the marginal one.

3 - ESTIMATORS

3.1 - Joint estimation

The general approach for jointly estimating the object and the aberrations, which is sometimes
called the joint Maximum A Posteriori (JMAP) approach, is defined by

(a, é)JMAP = argmax f(ila 19,0, @; 0) (6)
= argmax f(i1|o, a;0) f(iz|o, a; 0) f (0; 0) f(a; 6) (7)

where f(i1,142,0,a;6) is the joint probability density function of the data (i1,i2), of the object
o and of the aberrations a. It also depends on the set of hyperparameters 6 (# stands for the
regularization parameters). f(i1|o,a;6) and f(iz|o, a;6) denote the likelihood of the data i,
and iy, f(0;0) and f(a;0) are the a priori probability density function of 0 and a. The noise
in the images is the sum of the photon noise (Poisson distributed random variable) and the
Gaussian detector noise. In the case of Earth scenes, the mean signal is high enough so that
the photon noise can be approximed as Gaussian. Besides, we can assume that the global
noise is a stationary white Gaussian noise with a variance o? (the same for the two images).
We choose a Gaussian prior probability distribution for the object with a mean of o,, and a
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covariance matrix R,, and also a Gaussian one for the aberrations with a null mean and a
covariance matrix R,. Hence, we have

o 1 1 , 1 1 ,
f(ll,ZQ,O, a; 9) = Wexp (_ﬁnll — HlOH ) X WGXP (_F||Z2 — H20|| )

1 1 PR 1 1,
2mN?/2| R, |1/2 exp (_5(0_ om)'R, (0 - 0m)> x Wexp (_ia R, "a

where |z| denotes the determinant of z, N2 is the number of pixels in the image and k the

number of aberrations. The criterion to minimize, Lyyap(0,a) = — In(f (i1, i2, 0, a; 6)), can be
written in the Fourier domain. Furthermore its derivative with respect to the object gives[10]
a closed-form expression for the object 6(a) that minimizes the criterion for a given a.

_ hi(a)iy + hi(a)i, + g on
|hy(a)[? + |ha(a) 2 + 252

where tilde denotes the two-dimensional DFT and S, is the power spectral density of the object.
Substituting 6(a) into the criterion yields a new criterion that does not depend explicitly on
the object:

LIJMAp(a) = Ljuar(6(a),a)

1
2
Ino +3 EU In S,(v)

124

5(a) (8)

| [1(0)ha(v) = 20 (0) 2 + 557 [[1(0)5m(0) = 1 (0) 2 + |ha(0)om (v) = ia(0)]?]

25 N2 () + ha(0)? + 222
1
Eathla 9)

The a priori information required on the object consists of the power spectral density of the
object. We choose the following model
So(v) = E[6(v) = 6m(v)]’]
= K/ + 0] = [6m(v)]? (10)

where E stands for the mathematical expectation. This heuristic model and similar ones have
been quite widely used[11] . Notice that this model requires the choice of three hyperparamaters

00 = (k7 vo’ p)'
We will note 6, the hyperparameters due to the aberrations prior, and 6, those due to the
noise statistics.

3.2 - Marginal estimation
3.2.1 - Criterion

When phase diversity is used as a wavefront sensor, the aberrations only need to be estimated,
the observed object is a nuisance parameter. We propose to estimate the sole phase or the phase
and the hyperparameters by integrating the object out of the problem. This novel estimator
is obtained by integrating the probability density function used for the joint estimation and it
is based on the Maximum A Posteriori estimator for a, which is defined by

ayap = argmax f(iy,i,4a;6)
a

= argmax/f(il,i2,o,a;9)do (11)
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We denote I = (i; i2)” the vector which concatenates the data. I depends linearly on variables
(o and n) that are Gaussian, so it follows a Gaussian statistics. Maximizing f(i1, 15, a;60) =
f(I,a;0) is thus equivalent to minimizing the following criterion:

Lyap(a) ocIn |Ry| + (I — mp)"R; (I — m;) +a'R,'a (12)

where m; = (H,0,, H0,,)" is the vector which contains the mean images, R; is the covariance
matrix of I and |R;| its determinant. R; has the following expression (1 is the identity matrix):

HlRoHlt +0%1 HlRoH;

R = H,R,H! HyR,H! + 021

(13)

3.2.2 - Relationship between the joint estimator and the marginal estimator

It can be shown[12] that the two criterions Ly,p and L are related by the following rela-

tionship:

JMAP

Lyap o< In|Ry| + L (14)

JMAP

Thus, the difference between the marginal estimator and the joint estimator consists of a single
additional term, which in the Fourier domain is given by:

1n|RI\_ZlnS ) + N?1Ino? +Zln<|h1(v)|2+|h2(v)|2 2‘25)) (15)

Although the two estimators differ only by one term, we shall see in section 4 that their prop-
erties differ considerably. Before that, let us see how the hyperparameters can be estimated.

3.3 - Estimation of the hyperparameters

The marginal estimator as the joint one calls for the choice of the values of the hyperparameters
6 = (6,,0,,0,). The difficulty for estimating 6,,, 6, and 6, is not equal : the hyperparameters of
the aberrations 6, could be easily adjusted by using Kolmogorov statistics, the hyperparameters
of the object 6, must be estimated for each object because they depend on the structure of the
object. For the marginal estimator, the estimation of 6, and 6,, is not a problem because they
can be easily estimated jointly with the aberrations. Indeed, they are given by

a,0,,06,) = argmax f(iy, is, a; §) (16)
a,0,,60n

There are four hyperparameters 6, = o2, 6, = (k, v,, p) to estimate but by doing the fol]owing
change of variable u = 02 /k, we can ﬁnd a closed-form expression for k such that aLMAP ‘ oi =
0. The criterion to minimize becomes Lyxp(a, i, o, p,6,). On the contrary, for the joint
estimator, hyperparameters 6, and 6, can not be jointly estimated with o and a. Indeed, the
criterion degenerates when one seeks 6, together with o and a; in particular it is possible to
find a pair (6,, o) that does not depend on the data such that the criterion tends to minus
infinity. So before minimizing L;y.p, these hyperparameters must be chosen by the user.

4 - COMPARISON

4.1 - Image simulation

In this section, we shall compare the two estimators by means of simulations. The simulations
have been obtained in the following way: our object is an Earth view. The phase is generated
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with the first 21 Zernike polynomials (their values are listed in Table 1) and the estimated

phase will be expanded on the same polynomials. Note that the coefficients a;_3 will not be
estimated: the piston coefficient a; is a constant added to the phase and has no influence on
the point-spread function and the tilts coefficients as, as introduce a shift in the image that is
of no importance for extended objects. The defocused amplitude for the second observation
plane is 27 rad peak to peak. The simulated images are monochromatic and are sampled at
the Shannon rate. They are obtained by the convolution (made by FFT) of the point-spread
function and the object (see Figure 2) and corrupted by a stationary white Gaussian noise.

a; (2 as Qg ar ag Qa9 (510) ai a2
(rad) -0.2 0.3 |-0.45 0.4 0.3 ]1-0.25| 0.35 0.2 0.1
a; a3 a14 ais a1e aiy aig a9 as0 a2
(rad) 0.05 | -0.05| 0.05|0.02]0.01]-0.01/-0.0210.01]0.01

Table 1: Values of the coefficients used for simulations

Figure 2: (a) aberrated phase (A/7rms), (b) true object, (c) focused image, (d) defocused image

4.2 - Properties

One acknowledged problem with joint estimation is that it does not ensure that bias and vari-
ance asymptotically vanish, i.e. the estimate may not converge towards the true value as the
data size tends to infinity[13, 14] . On the contrary, the marginal estimator, under not very
restrictive conditions, has a null asymptotic bias and variance[15, 16]. Figure 3, obtained with
simulations, illustrates these asymptotic behaviors. Notice that we use a gradient-conjugate
method to minimize the criterion and that these curves, like all the following ones, are the
average on 20 realizations of noisy monochromatic image pairs. Furthermore we have not
regularized the aberrations (an explicit regularization is not necessary when the phase is ex-
panded on few Zernike polynomials (21)). For the two estimators, we have set the value of the
hyperparameters (noise + object): o is equal to the average number of photons per pixels and
we fit the power spectral density model with the true object to obtain the hyperparameters (k,
v, and p), which will call the “true” hyperparameters. For the marginal estimator (left figure
3), the root mean square error (RMSE) of the aberration decreases when the number of data
increases. On contrary, for the joint estimator (right figure), the increase of the number of data
has no effect on the RMSE. An intuitive explanation of this phenomenon is that, if a bigger
image is used to estimate the aberrations, the size of the object, which is jointly reconstructed,
increases t00, so that the ratio of the number of unknowns to the number of data does not tend
towards zero. Additionally the joint criterion may present local minima, whereas according to
a Central Limit Theorem, when the number of data (i.e. the image size) increases, the shape
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of the likelihood function tends to become more and more Gaussian so that it presents less
and less 1 ¢ | minim .

0.12[ T ] 0.15 T
[ 32x32 ] [ 128x128 |
. 1 L

0.101 = b | 4 B4x64 |
0.08} o ' , oLt 32x32 ]
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Figure 3: RMSE of aberrations estimates as a function of noise level. Left figure is for the marginal
estimator, right figure is for the joint estimator.

.3 - Influence of the hyperparameters

The problem of the hyperparameters is not the same as we use the joint estimator or the
margin | ne. F r the j int estim t r, we h ve p inted ut th t they must be estim ted by
h nd, we will study n w the influence f the gl b 1 hyperp r meter (1/k) i.e. the ne th t
qu ntifies the tr de- ff between g dness ffitt thed t nd the a priori, n berr ti ns
and bject estim tes. Figure 4 sh ws the RMSE n the berr ti ns estim tes nd n bject
estim te s functi n fthe v lue f this hyperp r meter (we v ried 1/k r und its true v lue
which corresponds to 1 in figure 4). We see that the best value of this hyperparameter is
not the same for the object and for the aberrations. For the estimation of the aberrations,
the reconstruction is better when the object is under-regularized. The behavior of the curve
corresponding to the aberrations depends on the noise level: for a high noise level (14% here),
there is one optimal hyperparameter but for lower noise levels (4%), any value under 1, includ-
ing a null regularization, leads to an accurate estimation of the aberrations even though the
j intly estim ted bject ist t lly n isy. This bserv ti n sheds s me light n the f ct th t,
f r1 wn ise level, unregul rized ph se estim ti n h s been successfully used in the liter ture
[17, 18] nd s th t expl ins thel ¢ fregul riz ti n used n the bject[19, 2, 3, 6] (it is
difficult t regul rize the bject with utl sing nthe berr ti nsestim tes). This bserv ti n

Is le ds ust study the sympt tic beh vi r f the j int estim t r with n regul riz ti n.
Figure 6 shows the results. In this case, when the number of data increases, the RMSE on the
aberrations estimates decreases. The number of data samples over the number of unknowns is
the same as for the estimation with the true hyperparameters but here, the estimator behaves,
surprisingly, as if the object were not being estimated. For the marginal estimator, we compare
the quality of the aberrations reconstruction obtained by minimizing Ly,p with the true hy-
perparameters and by minimizing Lyp(a, i, o, p, 6,) which we call unsupervised estimation,
for two different image sizes. From figure 5, we see that for low noise levels, the agreement is
very good. For 128 x 128 pixels, it is quite good for any noise level. For 32 x 32 pixels and
high n ise level, the rec nstructi n is seri usly degr ded bec use fthel ¢ finf rm ti n
contained in the noisy data.
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Figure 4: Plots of RMSE for aberrations estimates (solid line) and object estimate (dashed line) as
a function of the value of the hyperparameter 1/k for an image size of 32 x 32 pixels. Left figure is
for a noise level of 14%, right figure is for 4%.
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Figure 5: Performance of marginal estimation with the true hyperparamaters (pluses +) and for an
unsupervised estimation (square [J) as measured by RMSE of aberrations estimates vs. noise level.
The solid line indicates an image size of 128 x 128 pixels; and the dashed line indicates an image size
of 32 x 32 pixels
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Figure 6: RMSE of joint aberrations estimates as a function of noise level for a null regularization.
The solid line indicates an image size of 128 x 128 pixels; the dashed line indicates an image size of
64 x 64 pixels; and the dotted line indicates an image size of 32 x 32 pixels.
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4 - Numerical comparison

We present results of the comparison between the joint estimator and the marginal estimator.
In order to compare these estimators in a realistic way, we use the joint estimator with a null
regularization and for the marginal approach, the hyperparameters are reconstructed jointly
with the aberrations. We compared the root mean square error of the aberration estimates
as a function of noise level for two image sizes (32x32 pixels and 128x128 pixels). The results
for the two estimators are plotted in figure 7. We can see at least two different domains:
when the noise level n < 5%, the two estimators give approximately the same results. For
5% < n < 20%, the MAP estimation is better. We have noticed that the results, for very
high noise level n > 15% and an image size of 32 x 32 pixels, depends on the value of the
aberrations coefficients i.e. the joint estimator could give better results than the marginal
estimator. Anyway, in practice, this noise level is never reached. In terms of computational
time, these two methods are quite equivalent.

0.20[ = ]
r “7 joint—32x32

©
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©
IS}
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error (rad)

_+

©
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Figure 7: RMSE of unsupervised marginal estimator (square [J) and the joint one with null regular-
ization (pluses +) aberrations estimates as a function of noise level. The solid line indicates an image
size of 128 x 128 pixels; and the dashed line indicates an image size of 32 x 32 pixels

5 - CONCLUSION

We have presented two estimators. The first one is based on joint estimation of the aberrations
and the object. It is the usual estimator in the field of phase diversity. We have shown its
properties with simulations and pointed out its surprisingly good behavior for null regulariza-
tion. We have also proposed a novel marginal estimator which estimates the sole aberration
parameters and allows unsupervised estimation of the hyperparameters. We have shown, with
simulations, its good asymptotic behavior. Finally, we have compared the performance of these
estimators, for the reconstruction of the aberrations, for different image sizes and different noise
levels. It appears that the marginal estimator gives equal or better reconstructions than the
joint estimator while presenting a better coherence.
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