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ABSTRACT 

Experimental data acquisition and statistical data analysis are core components in photonics undergraduate curriculum. 
Although it focuses on experimental data, the content is usually delivered by a lecture-based format. This disconnect is 
partially due to the contents are delivered at the early years of the program when experimental data acquisition 
techniques have not yet been introduced.  In a second-year data acquisition and applied statistics course, we have 
designed an experiential learning module that covers the fundamental content of data acquisition and statistical analysis.  
This module has a single physical experimental setup that is continuously measuring environmental parameters 
(temperature, humidity, light, imaging, etc.) with a set of multi-modality sensors in an Internet-of-things (IoT) big data 
platform.  Different types of sensors measuring the same parameters are also used for cross-validation purposes.  The 
data is streamed to a cloud computing platform, allowing each student to acquire their own subset of data, then perform 
processing and analysis. The capability of remote access to a physical sensing experiment provides the students with 
hands-on learning opportunities on a managed complex data acquisition system.  The platform provides a set of 
powerful visualization tools to allow a multi-dimension view of complex data streams (e.g. time-lapse of statistical 
distribution). Such IoT data acquisition platform allows key concepts to be demonstrated, applied, and tested including 
error propagation, distribution and test of distribution, correlation and cross-validation, data rejection, and signal 
processing. This experiential learning module has been demonstrated to be more effective in achieving related learning 
objectives through quantitative graduate attribute measurements as well as qualitative feedback.  
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1. Introduction 

Most undergraduate engineering curriculum requires applied statistics.  A key aspect of applied statistics is closely 
associated with experimental data acquisition, processing, and analysis. Typically, statistics for engineers is taught 
through a traditional lecture-based format and provides students with the background and tools necessary for application 
in engineering concepts. However, students often find it difficult to apply the tools to practical engineering problems 
because statistics is taught as a theory heavy math course that has limited relationships to their engineering speciality [1].  
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Often in early level engineering classes, students have not yet learned data acquisition instrumentation. As a result, the 
data acquisition and analysis are taught on paper using hypothetical experiments and simulated data sets. The lack of 
opportunity to connect statistics with other engineering courses causes students to view the course as an entirely separate 
topic rather than an essential part of engineering practice [1].  

Experiential learning is a process through which the learner constructs knowledge, skill, and value from direct 
experiences. At the undergraduate level for engineers, experiential learning is delivered through course projects, 
internships, and capstone projects. However, these types of vehicles for delivery are usually introduced in the senior 
years when students have the fundamental theoretical knowledge to use during the experience. Engineering students 
should be introduced to real problems and application of theoretical knowledge as early as possible since they build the 
critical skills that are vital to the engineering profession [2]. Experiential learning can also provide the means of learning 
through action as students who chose to study engineering enjoy “doing things” which should translate to better learning 
outcomes [3].  

To address these challenges, we developed an experiential learning module that uses a smart environmental sensing 
system providing students hands-on experiences to apply the statistics concepts and theories to process and analyze real 
engineering data. The smart sensor system is capable of continuously measuring multiple environmental factors 
(temperature, humidity, light, images) with different sets of sensors.  The data acquisition is achieved by an Arduino 
based platform and experimental control and data communication is managed by a Raspberry PI. The data is 
continuously uploaded to a cloud data platform, PI Vision, created by our industry partner, OSIsoft, where the students 
can view and download the data for analysis.  

2. Data Acquisition System (DAQ) 

The smart sensor station system that has been developed can be described as a sensing module that periodically 
measures the local environment, a relay module that sends the data to a remote server, and a webpage-based user 
interface used to view and export data as shown in Figure 1.  

2.1 Sensing Module 

The sensing module of the DAQ system consists of an Arduino UNO and several sensors for climate monitoring. The 
sensor set includes an ambient light sensor, two temperature sensors with different precisions, and a humidity sensor. 
The Arduino UNO is used to measure each group of sensors through its inputs once every 30 seconds. The ambient light 
sensor is measured as an analog input between 0 and 3.3V where the voltage measured is proportional to the intensity of 
light in the room. The temperature and humidity sensors are connected as digital inputs and the digital signal is 

In the McMaster Engineering Physics program, the first statistics course that the students take is Eng Phys 2W03, 
“Applied Statistics for Engineering” with a focus on experimental data acquisition and analysis. This course introduces 
second year engineering physics students to estimation of true value, probability density functions, analysis of variance, 
experiment design, and application of statistical analysis. The 3-credit unit course consists of three-hour lectures and a 
tutorial every week over the span of one semester. In the past years, theoretical concepts were delivered through lectures 
and Matlab and Microsoft Excel was taught in tutorials for data processing and plotting (including curve fitting). The 
assignments were analytical problems from the textbook (John R. Taylor: “An Introduction to Error Analysis: The study 
of uncertainties in physical measurements,” 2nd Edition, 1997, University Science Books).  

 

processed to determine the temperature and relative humidity. Two sets of sensors were built into two separate sensor 
stations. The DAQ system is controlled by a Raspberry Pi (v3 Model B+) equipped with a CMOS camera module to 
capture pictures of the environment at the moment of each measurement.  
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Figure 1: Sensor station system schematics and process flow 

The Raspberry Pi serves to distribute power from the supply to the sensor modules, formats the data retrieved from the 
sensor modules, and relays the results to the cloud based OSIsoft PI Vision server over the internet. The Raspberry Pi 
runs a python script that allows it to read the sensor results from each Arduino using serial communication; then stream 
the data to the server as a formatted message that identifies the station, the time the data was captured, the data type, and 
the measurement result. The data can then be viewed from the PI Vision display in real time and exported for analysis 
from a computer or wireless device. 
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2.2 Cloud Data Storage and User Interface 

The OSIsoft PI Vision is a web enabled user interface that is accessed remotely over the internet as shown in Figure 2. 
This enables multiple concurrent users to access results from a browser. After logging in, the display can be configured 
to show all of the data collected or it can show data for fixed time frames in the form of graph indicators. The data can 
then be exported from the display for further processing and analysis. Alternatively, gauges and dials can be added to the 
display to show the most recent results reported by each sensor module. These indicators can be arranged over a 
schematic such as a floor plan or a front panel display to provide additional context to the data being collected. The 
display can be easily reconfigured or updated to include additional indicators as additional DAQ modules are added to 
the system.   

 

Figure 2: OSIsoft PI Vision display 

3. Learning Objectives and Outcomes 

The DAQ system was placed facing a window in a room in the Burke Science Building (BSB) at McMaster University, 
where all Eng Phys 2W03 students performed their introductory Electromagnetism lab.  Hence all students in this course 
can physically see, but not adjust, the system (Figure 3). Building the unit for the students allows separation of the 
challenges in electronics hardware so that they can focus on the data acquisition aspects, which is the emphasis of the 
course. In addition, the PI Vision cloud data platform gives all students access to the data using one data acquisition 
module, significantly reducing costs associated with labs, such as experimental hardware, maintenance, and space. PI 
Vision also gives students the flexibility to visualize and analyze the data on their own time, from any device with 
internet access. The design allows the development of additional lectures that cover basic smart sensor technology and, 
most importantly, how to deal with real experimental data including noise, systematic errors, random errors, and multi-
sensor validation (from different temperature and humidity sensors), correlation, system response, etc. Abstract concepts 
(e.g. distributions of random error, correlations between different sensors (e.g. light vs temperature), erroneous data 
rejection, digital signal processing, etc.) introduced in the lecture can now be associated with real data sets.  At the same 
time, students still learn to use Matlab and Excel as they are required to process, plot, and analyze data. 
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Figure 3: DAQ sensor system (a) and camera view of the window (b) 

The following concepts were taught with the DAQ module: 

 Plotting data with error bars 
 Understanding differences between different types of sensors of the same sensing parameter 
 Plotting sensor data distributions   
 Using Chi-squared test of distributions 
 Developing hypothesis to explain data trends and hypothesis testing 
 Determining outlier rejection 
 Making conclusions about whether variables are correlated and how correlated variables can be used to predict 

each other 
 Calculating and determining if variances are caused by random or systematic errors  

3.1 Assignments and Tutorials 

The DAQ system was mostly introduced and discussed in tutorials and assignments so that students would obtain 
theoretical background knowledge in the lectures. In the first tutorial, students were introduced to the DAQ station. The 
system was brought to the tutorial session and students were able to physically see the components as the component 
specifications were being reviewed. The students would be able to view the system anytime in the lab where it is 
constantly acquiring data, if they wish to see the setup again. The data acquisition process and equipment were also 
explained to them. They were then shown how to extract data from the PI Vision dashboard. In subsequent tutorials, the 
assignments were brought up and the students would self-grade their assignments which will be discussed in the next 
section of the paper.  

The assignments associated with the DAQ system were developed as case studies and followed the flow of the course. 
The DAQ assignments allowing the students to acquire selected sets (e.g. time frame) of data and work with the data set. 
Since the DAQ module is acquiring data 24/7, assignments can be designed so that different data sets can be used for 
different students, preventing plagiarism and promoting higher critical thinking. 

The learning outcomes for each case study are listed Table 1 below. 

Table 1: Case Study Learning Outcomes 

Case Study 1 Case Study 2 Case Study 3 
 Set up remote access, data download 
 Preprocess the data in Excel or Matlab 
 Plot selected data with error bars 
 Understand the differences between 

different types of sensors of the same 
sensing parameter 

 

 Plot sensor data distributions  
 Chi-squared test of distributions  
 Develop hypothesis to explain 

data trends and hypothesis 
testing 

 Outlier rejection 
 

 Correlation between 
different sensing 
modalities 

 Variances   
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3.2.2 Case Study 1 

In the first case study, students learn how to export data from PI Vision and either pre-process it in Excel or import it 
directly into Matlab. They are then asked to calculate the running average and running standard deviation for a 1-hour 
window over a 12-hour period. Depending on their student numbers, students were split into two groups, so that each 
group used a different 12-hour data set. Each of the 4 sensors were plotted as a running average and must include 
standard deviations with error bars. The students were then asked to give an explanation for the shape of the error bars 
observed in each series and learn the statistical significance associated with each type of sensor.  

Figure 4: Temperature and humidity sensor running average plot with standard deviations 

The plot of the data is shown in Figure 4. For regions where the slope looks to be relatively flat, the data is not changing 
over a long period of time. Therefore, the standard deviation must be small. Where the slope increases, there is a greater 
difference between values over time, so the standard deviation must increase.   

For the coarse temperature sensor, there is an egg-shaped error where the temperature changes with greatest error 
observed when the average is between two discrete temperature values. Error appears to be close to zero when the values 
are equal to discrete temperature readings. The coarse temperature sensor can only predict temperature in 1-degree 
increments. To plot an average of 1/2 degree, half of the values must be above and half must be below the average, this 
is where the error is greatest. When a reading is equal (or almost equal) to a discrete temperature, the temperature 
reading has been ~constant for 1 hour, so the error is small.  

3.2.3 Case Study 2 

For the second case study, students were asked to plot histograms of two humidity sensors in the same figure and 
assume the data follows a normal distribution. They then had to prove or disprove the assumption using a reduced Chi-
squared test. If there was any outlier data that they had rejected, they must explain why.  

The plots associated with case study 2 is presented in Figure 5. Figures 5a and 5b shows the short and long term 
humidity sensor plots. After outlier rejection, Figures 5c and 5d show the normal distribution and Chi-square tests. The 
expected counts are determined by looking at the range of data, average, and standard deviation. Based on the large Chi-
squared value, the distribution is determined not normally distributed. Data outliers were defined as data that was greater 
than 3 standard deviations from the average or if readings of 0% RH are accompanied by 0 on the other sensors.  
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Figure 5:Short term relative humidity (RH) measurements for two sensor stations (a), and long-term relative humidity measurements 
for two sensor stations (b). Short term observed vs. expected counts for sensor station 1 after outlier rejection (c) and long term 
observed vs. expected counts for sensor station 1 after outlier rejection (d). Station 1 relative humidity outlier rejection (e). 

3.2.4 Case Study 3 

Case study 3 tasks the students with producing correlation plots for a 24-hr period to determine if the measured values 
are correlated with one another. They also compare the fine and course temperature sensors in the same manner. They 
are then asked to plot the data as a 15-minute moving average with standard deviations for each of the sensors. A 
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trendline is added to determine the R2 value and trendline equation. The final exercise is to determine the variance for 
temperature and light levels and whether the observed variance is random or systematic.  

Figure 6: Temperature and light level over a 4-hour period (a); correlation of temperature and light level (b); variance between 
measured and expected temperature (c); and variance between measured and expected light level (d). 

Figure 6b shows that when the data is binned into 15 minute averages and after outlier removal, the temperature and 
light level trends seem to be correlated with each other as indicated by the R2 value. This case study shows the 
imporatance of allowing the students to see the experimental setup and the conditions that the system was in. One would 
expect that temperature and humidity would correlate well with each other and temperature would also correlate with the 
light level. However, we see little correlation between temperatue and humidity because the DAQ system was placed 
inside a building that is regulated by HVAC circulation. There is a loose correlation between the temperature and light 
levels. The DAQ system is placed at the window where it is exposed to the difference of light levels throughout the day. 
Despite the HVAC system in the building, the temperature near the glass window will change throughout the day as the 
sun warms the material, hence the slight correlation.  

Having dual temperature sensors and different precision temperature sensors allows for verification and compariosn 
between the same types of sensors. Both the coarse and fine temperature sensors are highly correlated, showing that the 
variances for temperature sensors indicate systematic error. The camera allows the students to observe the lighting in the 
window to compare with light level sensor readings throughout the day.  

3.3 Self – Grading of Assignments 

In traditional assignments where the students solve analytic problems, one issue is that they would do the homework but 
usually will not look at them afterwards.  Since identifying their own mistakes is an important learning method, the 
students brought their completed assignment to tutorial to mark along with the TA, based on a given rubric. The intent is 
for the students to review their own assignments and reinforce the learning. 
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3.4 Evaluation Structure 

The previous year’s evaluation structure is compared to this year’s evaluation structure in Table 2. The intent of the 
DAQ module is to replace the theoretical questions with hands-on data acquisition and provide real data sets to work 
with. The material developed for the module does not add extra work to the course as the assigned questions from the 
textbook are reduced to accommodate for the DAQ module. The overall load of the course is not significantly changed.  

Table 2: Evaluation Structure Comparison 

Previous Year’s Evaluation 
structure without DAQ 

Revised Evaluation Structure with 
DAQ 

Assignments 40% 10% 
Mid-term exam 1 20% 20% 
Mid-term exam 2 - 20% 

DAQ module – hands-on data 
processing 

- 10% 

Final exam 40% 40% 

3.5 Metrics 

The metrics used to evaluate the learning outcomes with the new DAQ module was by comparing the midterm and exam 
scores from previous years and through the Canadian Engineering Accreditation Board (CEAB) graduate attribute 
measurement in knowledge base competence.  

Although the questions in the midterms and exams vary from year to year, the difficulty level and concepts tested are 
comparable. In the first midterm, the class average was 78±12%, which is significantly better than the average grade of 
66±15% during 2014-2015 using similar questions. We also saw significant increase in final exam grade: 75±14 %, over 
55±15% in 2014-2015. However, the final exam questions are different between the two years so the results are not 
directly comparable.  

The Canadian Engineering Accreditation Board (CEAB) accredits undergraduate engineering programs. One of their 
accreditation evaluation criteria is graduate attributes which means that the institution must demonstrate that the 
graduates of a program possesses competency in certain areas. The indicator for knowledge base competence in natural 
sciences and engineering fundamentals was chosen to evaluate the performance outcomes of the effectiveness of the 
DAQ. The 2018 assessment is compared to the last assessment done in 2014. The data presented in Figure 7 indicates 
that there was no statistical significance between the two years.  

Figure 7: Eng Phys 2W03 graduate attributes assessments 

These measurements do not show a systematic and statistically significant measurement on student’s learning outcomes. 
Without a control group, it reduces the ability to make casual conclusions. In order for this to be a robust pedagogy 
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research experiment, we would need to run a control group that does not include the DAQ module alongside a group that 
uses the DAQ module. We need to take into account the student’s experience about the addition of the new module as 
this module is meant to be an experiential learning experience. We would also need a way to measure the carry over of 
knowledge to other courses and projects. However, based on the midterm and exam data that we have, we can 
hypothesize that the DAQ module may improve engineering students’ fundamental tool box in math and statistics 
through a hands-on experience that allows them to see and understand the experimental conditions based on exam scores. 
We hope that the they will be able to link the material learned in this course to their future courses and labs.  

4. Conclusion

As technological advances are made and are accessible to students and educational institutions, our methods of teaching 
are also able to evolve to more efficiently teach our future engineers. With this DAQ system, students perform and learn 
data acquisition, processing, and statistical analysis through IoT big data platform. The experiential learning module that 
we have created encourages a hands-on approach to statistics which is what engineers need to see their theory put into 
practice. As a result, students achieved higher test results and can link the content learned in this course to other courses, 
laboratories, and hopefully in their professional careers. 
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