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ABSTRACT 

Due to the lack of sufficient exploration of global spatial-temporal characteristics of traffic dynamics, large-scale and long-

term vehicle speed prediction problems have not been well solved. To this end, this study presents a 3-dimensional road 

matrix based deep learning model (3DM-DLM) to embed global similarities of road segments in constructing learning 

matrix. The global similarity is measured by sampling the correlation of vehicle speed, and the correlation aggregation of 

adjacent road segments in the matrix is realized by clustering and Z-order curve. The learning matrix is then used to train 

a deep neural network composed by convolution layers and residual units. We collected traffic speed data in Beijing to 

validate the 3DM-DLM. The results showed that compared with the baseline model, the prediction accuracy of the 

proposed model is improved by 8.05 % in the acceptable time, and it also proved the generalization ability of 3DM-DLM 

in specific cases. 
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1. INTRODUCTION 

Measuring traffic parameters such as traffic volume, speed and density is necessary for traffic management. Among these 

parameters, traffic speed is the basic index to evaluate the level of traffic management1. Since the speed on a given road 

segment is affected by the current and past speed of the nearby road segment, an effective prediction model must reflect 

the relevant traffic conditions of the entire road network at relevant moments. Based on this potential principle, researchers 

have tried a variety of methods from traditional time series analysis to the recent deep learning technology to predict traffic 

speed2-5. 

Machine learning model is also used for vehicle speed prediction and has achieved good results6-8 but the single hidden 

architecture of machine learning model cannot better identify the complex nonlinear structure in data. Deep learning model 

overcomes the above drawbacks by using long time series and large-scale data training to achieve highly nonlinear fitting9-

11. Recently, researchers have found that the vehicle speed prediction accuracy can be improved by designing a reasonable 

input matrix of deep learning12-15. Some methods of transforming a directed graph into a two-dimensional matrix13,16-20. 

This method has high precision, but the matrix generation algorithm is complex and it is difficult to obtain the required 

data; To address this problem, numerous methods16,21, which encode according to the direction and time sequence of traffic 

flow, have been proposed, but the mining of the relationship between road segments is not sufficient13; In addition, in the 

input matrix design, the similar feature of vehicle speed change is also an implicit feature that needs to be mined12. Yu et 

al.22 measured the similarity of vehicle speed change through the Dynamic Time Warping algorithm based on Euclidean 

distance, but it is very subjective to set the degree threshold as 5%. Shen et al.23 and Modi, Bhattacharya, and Basak24 

proposed algorithms for generating multiple similarity matrices by hierarchical clustering based on Pearson correlation, 

but this method is not suitable for long-time traffic speed like next-day traffic speed prediction. 

In order to overcome the above shortcomings, this paper proposes a design algorithm of 3-Dimensional Road input 

Matrix(3DM), which does not need to consider the geometric (spatial) information of the road network and directly 

executes the raw input data. The main innovation of the algorithm is to fully excavate the spatial and temporal correlation 

characteristics of vehicle speed change in the global road network through the reasonable layout of the matrix. In the 

experimental part, in addition to the comparison of time efficiency and accuracy with typical algorithms, this paper also 
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makes a comparative verification of traffic conditions under special cases. 

2. MODELING FRAMEWORK  

The overall framework of 3DM-DLM (3-Dimensional Road Matrix based Deep Learning Model) consists of two major 

parts. The first part transforms raw traffic data into a series of well-structured learning matrices that embed road 

dependence, which is the key to the improvement of traffic prediction. The second part addresses data training and 

prediction by feeding the learning matrices to a classic deep neural network architecture that integrates convolution layers 

and residual layers. 

2.1 Constructing 3D matrix 

(1) Road segments encoding 

The speed data of a road segment is represented by Si=[x1, x2, …, xn], where i denotes the ith road, and x1, x2, …, xn denote 

the sequence of the speed for each time interval. In this study, the intervals are of equal length. 

In the first step, road segments are sorted by a similarity-based clustering method. In this study, the similarity is measured 

by the Pearson’s correlation of the speed data21, as shown in equation (1).  

𝐶𝑜𝑟𝑟(𝑆𝑖 , 𝑆𝑗) = |
∑ (𝑥𝑡−𝑥̅)(𝑦𝑡−𝑦̅)𝑛

𝑡=1

√∑ (𝑥𝑡−𝑥̅)2𝑛
𝑡=1 √∑ (𝑦𝑡−𝑦̅)2𝑛

𝑡=1

|                                                               (1) 

where xt and yt represent the speeds of two road segments for the tth timespan, 𝑥 and 𝑦 denote the mean values.  

In the second step, this study employs agglomerative hierarchical clustering to group similar road segments25, as shown in 

equation (2). 

𝑓(𝑥, 𝑦) = ∑ (
1

2|𝐶𝑖|
∑ ∑ 𝐶𝑜𝑟𝑟(𝑥, 𝑦)2

𝑦∈𝐶𝑖𝑥∈𝐶𝑖
)

𝑛𝑢𝑚𝐶
𝑖=1                                                (2) 

where, numc represents the number of classes, Ci represents the ith class, and Corr(x,y) represents the correlation coefficient 

of road segment x and road segment y, and |Ci| represents the number of road segments in the class. 

In the last step, the road segments are uniquely numbered based on the tree structure generated by hierarchical clustering. 

As shown in Figure 1, firstly, in order to prevent the sorting confusion caused by too many road segments, 0.15 (the shortest 

distance method of hierarchical clustering) is used as the threshold to roughly stratify the tree. Secondly, the coding 

sequence is identified by a 6-bit decimal number (the coding length can be dynamically increased). Among them, the first 

two bits of the code identify the rough layers of the tree, the middle two bits identify the number of layers corresponding 

to the road segments in the same rough layer, and the last two bits identify the location of the road segments starting from 

the left in the same layer. 

 

Figure 1. Schematic diagram of the hierarchical clustering result. 

(2) 3D Matrix filling 

The calculation formula of matrix size is as follows: 

𝑛 = ⌊𝑙𝑜𝑔2
𝑆⌋                                                                                      (3) 
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𝑐𝑜𝑙 = 2^⌊𝑛/2⌋                                                                                   (4) 

𝑟𝑜𝑤 = 𝑐𝑜𝑙 + ⌈
𝑠−𝑐𝑜𝑙2

𝑐𝑜𝑙
⌉                                                                            (5) 

where s is the total number of road segments, col denotes the number of columns, and row denotes the number of rows. 

In this section, Z-order curve is used to realize matrix filling, mainly because it conforms to the convolution process and 

is simple and feasible.  

The interactions between road segments are complex, and thus a 2D matrix may not be sufficient to characterize their 

spatial-temporal relationships. For example, a traffic state xt on road segment is not only related to the road segment with 

high similarity of speed change, but also related to the previous moment of the road segment (xt-△t), the time of the previous 

cycle (xL*t) and the previous moment of the previous cycle (xL*t-△t). Therefore, the third dimensional order of 3D matrix is 

represented by Z=[xt-△t, xt-2△t, xl*t, xl*t-△t, xl*t+△t, xl*t-2△t, x2*l*t, x2*l*t-△t, x2*l*t+△t], where l denotes the day cycle and week cycle. 

2.2 Deep neural network training and forecasting 

The deep neural network dedicated to road speed training and prediction is composed by an input layer, multiple learning 

layers, and an output layer. The input layer is a series of 3D matrices that characterize road dependence at different 

timestamps and the output layer shares the same size with the input layer. The learning layer is based on the 3D convolution 

process proposed by Ji et al.25, and the ST-ResNet (Deep Spatio-Temporal Residual Networks) model proposed by Yan et 

al.26. 

The definition of the convolution function in this paper is as follows: The value of unit at position (x,y) in the jth 2D matrix 

in the ith 3D matrix, denoted as 𝑋𝑖𝑗
𝑥𝑦

, is given by 

𝑋𝑖𝑗
𝑥𝑦

= 𝑅𝑒𝐿𝑈 (∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑄𝑖−1

𝑞=0
𝑃𝑖−1
𝑝=0𝑚 𝑥(𝑖−1)𝑚

(𝑥+𝑝)(𝑦+𝑞)
+ 𝑏𝑖𝑗)                                              (6) 

where ReLU(·) is the rectified linear unit, m index over the set of 2D matrix in the (i-1)th 2D matrix connected to the current 

2D matrix, 𝑤𝑖𝑗𝑚
𝑝𝑞

 is the value at position (p,q) of the kernel connected to the kth 2D matrix, Pi and Qi are the height and 

width of the kernel, and bij is the bias for this 2D matrix, respectively. 

The convolution layer can identify features at multiple scales, and residual units improve network performance to prevent 

network training from disappearing gradient problems. All neurons in the network are globally connected, and in order to 

prevent the loss of corner information of the matrix, we use a border-mode which allows a filter to go outside the border 

of an input, padding each area outside the border with a zero. In addition, the loss function (𝐿(𝜃)) is defined as follows: 

L(θ) = ||𝑋𝑡 − 𝑋𝑡
′||2 

2                                                                              (7) 

where Xt denotes the real value of speed and 𝑋𝑡
′ denotes the predicted value of speed. 

3. EXPERIMENTS AND RESULTS 

3.1 Datasets 

This study evaluates the performance of 3DM-DLM using the traffic speed dataset of Beijing. Having more than 13 million 

residents, the capital city presents a representative sample to study complex urban traffic dynamics. Accurate traffic 

forecast is beneficial to solving the traffic congestion problem in such a super city. The traffic dataset is composed of 

12494 road segments with average speed data recorded at a 15-minute interval from April 16th to August 22nd, 2018 

(https://lbs.amap.com). As shown in Table 1, these road segments are classified as highways, ring roads, main roads, and 

other roads, which are used to examine the performance in difference types of road segments. This study also divides the 

dataset into five subsets of randomly selected road segments with the number of records increased from 20% to 100% of 

the total size, which are used to examine the performance in different size of datasets (Table 2). 

Table 1. Categories of road segments. 

Road category D11 (highway) D12 (ring road) D13 (main road) D14 (other road) 

Road segments 965 2331 6797 2401 
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Table 2. Number of road segments in the five sub-datasets. 

Dataset D21 D22 D23 D24 D25 

Road segments 2499 4998 7496 9995 12494 

During training, this study uses Max-min function to normalize the data to [0, 1]. In the evaluation, the predicted value is 

rescaled back to the standard value and compared with the ground truth value. In addition, 80% of the data is used as the 

training set and the remaining 20% is used as the test set. 

3.2 Baseline methods and evaluation metrics 

The baseline methods in the comparison include: TCA-DCNN (Temporal Clustering Analysis and Convolutional Neural 

Network with Deformable kernels)23, DSF-LAM (Dynamic Spatiotemporal Framework-combining LSTM and 

Attention Mechanism)27 and EN-GRN (Graph Recurrent Network)20. TCA-DCNN expresses the upstream and 

downstream relationship between road segments by designing spatial-temporal correlation matrix, and improves speed 

prediction accuracy by time clustering and designing variable convolution kernel. DSF-LAM gridizes the road network, 

uses bidirectional LSTM and CNN to dynamically obtain the time correlation of vehicle speed, and then uses a more 

refined attention mechanism to learn short-term and long-term cycle characteristics. Lei et al. (EN-GRN) constructed a 

parameter matrix that can represent the specific spatio-temporal characteristics of each node to enhance the 

representation of road-specific traffic patterns, and used node embedding to reduce the size of the parameter matrix.  In 

the comparative experiments, the above three algorithms are typical and have good accuracy in speed prediction. In 

addition, these three algorithms use the speed data which are easy to obtain, and the experimental processes are easy to 

implement. 

The evaluation benchmarks for speed prediction performance of the proposed methods are root-mean-square error (RMSE), 

mean absolute error (MAE) and sample standard deviation (STD.S). These can be calculated by the following equations: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖̂)2𝑚

𝑖=1

𝑚
                                                                              (8) 

𝑀𝐴𝐸 =
∑ |𝑦𝑖

𝑚
𝑖=1 −𝑦𝑖̂|

𝑚
                                                                                  (9) 

STD. S𝑖 = √∑ (𝑥𝑗−𝑦𝑖̂)
2𝑛

𝑗=1

𝑛−1
                                                                            (10) 

where yi denotes the ith predicted speed value, 𝑦𝑖̂ denotes the ith actual speed value, m is the total number of road segments, 

𝑆𝑇𝐷. 𝑆𝑖 denotes the ith time point’s deviation between the predicted speed and the actual speed, 𝑥𝑗̂ denotes the ith time 

point’s predicted speed value, and n is number of experiments at time point i. 

3.3 Comparison of different prediction algorithms 

In this section, we compare the training efficiency of the 3DM-DLM and other algorithms. Table 3 shows the RMSE 

variation curves versus the training epoch. The loss of the 3DM-DLM decreases fastest among the compared 

algorithms.  

Table 3. Parameter comparisons of four algorithms when the deep learning enters a stable state. 

Algorithm 
D11 D12 D13 D14 

Step RMSE Step RMSE Step RMSE Step RMSE 

3DM-DLM 67 2.08 78 2.17 91 2.5 99 2.61 

EN-GRN 73 2.15 84 2.21 99 2.49 101 2.84 

DSF-LAM 68 2.18 76 2.14 89 2.49 98 2.99 

TCA-DCNN 69 3.05 73 3.37 96 4.32 118 5.16 
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Algorithm 
D21 D22 D23 D24 

Step RMSE Step RMSE Step RMSE Step RMSE 

3DM-DLM 118 3.4 121 3.36 115 3.15 109 3.01 

EN-GRN 114 3.35 124 3.43 112 3.56 110 3.25 

DSF-LAM 133 3.76 198 4.11 121 4.01 116 3.77 

TCA-DCNN 135 6.12 130 5.8 124 5.66 117 5.57 

Figure 2 shows the training and prediction time of different algorithms on different datasets. It can be seen from the figure 

that the trend line (jujube red) shows an upward trend, indicating that compared with the speed prediction of heterogeneous 

roads (D21-D25), the speed prediction experiment after road classification (D11-D14) has better time efficiency in the 

training and prediction stage. In addition, in the training and prediction stage, the time ratios consumed by the four 

algorithms are all greater than 1, indicating that due to the design of the correlation matrix, 3DM-DLM can quickly 

complete the learning and prediction process, and the time advantage becomes more and more obvious with the increase 

of data volume and road type complexity. 

 

Figure 2. Time ratio of different algorithms. (a) training time; (b) predicting time. 

Figure 3 shows the overall rating prediction error of 3DM-DLM and other three algorithms under different ratios of training 

set for the nine datasets. As shown in Figures 3a-3d, from D11 to D14, although the road type is relatively single, the 

factors affecting vehicle speed (more intersections, narrower road width, etc.) are becoming more and more complex. The 

average MAE of the four algorithms is increased from 1.56 to 2.43, but the prediction accuracy of 3DM-DLM is improved 

from 4.68 % to 28.97 %. It can be seen from Figures 3e-3i that with the increase of data volume, the prediction accuracy 

of 3DM-DLM increases from 11.69 % to 33.08 %. We also found that the prediction accuracy of 3DM-DLM increased 

from 19.75 % to 21.70 % with the increase of prediction horizon. In addition, we tested the experimental results and found 

that the difference in the prediction accuracy of the four algorithms was statistically significant (P<0.01, double tail) by 

paired t-test. The results show that 3DM-DLM has strong robustness to extend to new data samples. 

 

 

Figure 3. MAE Results of different algorithms. 

Proc. of SPIE Vol. 13395  1339517-5



3.4 Performance for specific cases  

Rainfall is an important factor affecting the efficiency of urban road traffic. This part takes the rainstorm event on July 16, 

2018 in Beijing as an example to carry out empirical research on Zhongguancun South Road, which is greatly affected by 

rainfall. As shown in Figure 4a, the rainfall period in this road segment is 8:00-9:00 and 18:00-19:00, at which the speed 

is 5.01 km/h lower than the weekly average, and the prediction error (STD. s) of each algorithm is as high as 2.39 (Figure 

4b). However, compared with the other three algorithms, the speed prediction accuracy of 3DM-DLM is improved by 

19.67 % (especially during rainfall, its accuracy is increased by 60.38 %), which provides data support for emergency 

response and management of urban rainfall events. 

 

Figure 4. Performance comparison of four algorithms under rainfall events. (a): Comparison of vehicle speed prediction; (b):  

Comparison of sample standard deviation of vehicle speed.  

Congestion is an important cause of waste of traffic resources8. This section introduces the accuracy of each algorithm in 

the prediction of the congestion index of Zhongguancun South Road, which is the main road in Haidian District. Among 

them, the congestion index is obtained based on the fitting of the existing congestion index data and vehicle speed data. 

As shown in Figure 5a, the prediction accuracy of 3DM-DLM increased by 63.54% in the peak period of work and 34.78% 

in the whole day (as shown in Figure 5b). The main reason for the better performance of 3DM-DLM is that in addition to 

the higher prediction accuracy of vehicle speed, as shown in the zoom diagram of Figure 5a, the smaller gap of vehicle 

speed data may correspond to the larger gap of congestion index and congestion level. 

 

Figure 5. Performance comparison of four algorithms for Zhongguancun South Road on 16 July 2018 (prediction horizon: 15 min). (a): 

Traffic congestion index and traffic congestion level prediction during peak hours of work; (b): Traffic index prediction for 24 hours.  

4. CONCLUSIONS 

Future smart traffic needs to process large-scale, long-term series of speed data to predict, analyze and understand complex 

traffic conditions. Aiming at the problem of inaccurate and untimely vehicle speed prediction, this paper proposes a novel 

and effective model (3DM-DLM). This model transforms the original traffic data into a series of well-structured embedded 

road correlation learning matrices by mining the spatio-temporal correlation characteristics of vehicle speed changes, and 

uses the deep learning model to realize the speed prediction. In this study, a group of empirical experiments are performed 

using the traffic speed collected at 15 min intervals from a Beijing transportation network with 12494 road segments. 

Proc. of SPIE Vol. 13395  1339517-6



Compared with the existing algorithms, 3DM-DLM has high accuracy and computational efficiency in large-scale and 

long-time interval vehicle speed prediction. Furthermore, the prediction accuracy under specific cases were tested, and the 

results shows that our 3DM-DLM can acquire the optimal result.  

This study only focuses on the use of speed data from a single data source to predict speed. However, changes in speed 

will be related to holidays, rainfall, snow and other external conditions, which may be more accurate and meaningful for 

travelers, commuters and administrative departments. In future work, we will try to fuse multiple types of data from 

different sources to establish traffic prediction models for predicting traffic condition-related properties. 
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