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Abstract 
 

EUVL lithography using high resolution step and scan systems operating at 13.5nm is being inserted in leading 
edge production lines for memory and logic devices. These tools use mirror optics and either laser produced 
plasma (LPP) or discharge produced plasma (DPP) sources along with reflective reduction masks to 
image circuit features. These tools show their capability to meet the challenging device requirements for 
imaging and overlay. Next generation scanners with resolution and overlay capability to produce 1X nm (10 nm 
class) memory and logic devices are in preparation. Challenges remain for EUVL, the principal of which are 
increasing source power enabling high productivity, building a volume mask business encouraging rapid 
learning cycles, and improving resist performance so it is capable of sub 20nm resolution. 

 

1. ROADMAPS 

 

Performance improvements and density increases continue in memory and logic devices driven by the 
lithographic shrink. Moore’s Law can be expected to extend to 2018 at least. In Table 1 the general device 
roadmap for logic, DRAM, and flash memories is shown. This information is based on projections by device 
engineers at IMEC and  ASML, and does not represent any specific company’s roadmap. One can refer to 
excellent invited papers published at IEDM and the VLSI Symposium in recent years to get an in-depth view of 
likely developments in electron devices for the rest of this decade. (1,2,3) 

Briefly, in logic, the planar CMOS transistor will be replaced by the finFET (4) or one of its variants such as the 
trigate transistor (5) in order to improve device leakage and drive current at smaller feature sizes. In DRAM, the 
storage capacitor becomes more difficult to scale and DRAM may be replaced by other devices such as the STT 
MRAM (6) or the Phase Change RAM (PCRAM, 7). In flash, the floating gate device faces scaling challenges 
in the diminishing number of electrons that constitute a bit and cell-to-cell interference. Possible replacement 
devices include the BiCS-type charge trap 3D stacked memory (8) and the 3D cross-point ReRAM (9). Further 
cost reduction in nonvolatile memories may be achieved by 3D stacking of layers such as the crosspoint 
concept. Further integration of different device types using through-silicon-via (TSV) technology may come to 
pass (10). 

Lithographic shrink remains the key driver of cost reduction in almost all scenarios. Figure 1 shows the average 
shrink rate for each major device type as reported to ASML by its customers projected to the end of the decade. 
Flash memory due to its simple periodic patterns allowing full utilization of low k1 imaging and double 
patterning (11) has shrunk faster than other types. With more complex imaging problems, DRAM and logic 
have approximately the same shrink rate, with logic offset by about 18 months from DRAM. Also shown is the 
rate of introduction of new lithographic resolution by ASML in dry ArF, immersion ArF, and now EUV 
scanners to support the fabrication of these devices. 193nm immersion and multiple patterning can support 2X 
nm device manufacturing but at expense of excessive design rules, extended cycle times, and extreme mask 
complexity. EUVL shows the promise of succeeding 193nm as the main lithographic technology for 1X nm 
device fabrication. 
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SRAM Cell
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Logic
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DRAM 

DRAM
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NAND

NAND Flash
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Table 1:Device roadmaps support shrink ambitions                            Figure 1: Industry roadmap towards < 10 nm resolution 
              (Source: IMEC, ASML TDC)                 (* Note: Process development  1.5 ~ 2 years in advance) 

 
 
 

 

Table 2 indicates the EUV scanner roadmap for industrialization. ASML built two development tools in 2006 
which feature 0.25 NA, 6 mirror projection optics and use discharge produced plasma (DPP) sources (12). 
These tools have been used to produce early device demonstrations, and to allow resist chemistry and EUV 
mask developments. In 2010, ASML shipped the first NXE:3100 EUV scanner (13) to a chipmaker. This tool 
also uses the 6 mirror, 0.25NA design but due to significant improvements in mirror polishing and tool stability, 
the resolution achieved is substantially better. The NXE:3100 is configured to work with either DPP or laser 
produced plasma (LPP) sources. Six of these tools have now shipped to device makers and research institutions 
as of 2011. In 2012, ASML will start to ship the NXE:3300, featuring a 0.33NA projection lens. The NXE:3300 
will support 1X nm device manufacturing, with expected production insertion in 2013-2014. 

 

 

 

ASML EUV Industrialization – Total system
NXE:3300 on track for production insertion in 2013-2014
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                             Table 2: ASML EUV Product Roadmap 
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2. 1X NM DEVICE REQUIREMENTS FOR LITHOGRAPHY 

 

A trend in logic that has significant impact in lithography is the movement toward gridded layouts with restricted 
design rules. Mark Bohr of Intel has illustrated this (14) in gate mask layout, contrasting the style used for 65nm 
node with the style at 32nm (see Figure 2). On the left, the layout style for 65nm has geometries which run both 
horizontally and vertically, and the gates have different widths and are on different pitches. On the right, the style for 
32nm features gates of uniform dimensions and oriented in one direction only. Gates are patterned as lines and 
spaces and then cut in a separate mask or masks. Yan Borodovsky of Intel has introduced the concept of 
complementary lithography which takes this trend a step further and adapts this style to interconnect layers (15). He 
has shown how 193nm immersion lithography can be adapted to produce 14nm node and even 10nm node logic 
devices using spacer technology (also known as pitch division) to pattern a very fine grating and then create 
openings with a number of cut masks. This elegant scheme allows 193nm immersion lithography to be extended far 
beyond where it was once imagined possible. However, the number of masks required to fully pattern one critical 
layer can be daunting: a mask to create the grating, two or more cut masks depending on the minimum pitch, and a 
mask (or masks) to form peripheral circuitry. How much simpler it is to consider doing this in a single exposure with 
EUV! Or, if LWR or line end shortening exceed budgets, EUV can be used to expose the cuts in a single exposure 
with much greater fidelity than would be possible with immersion scanners.  Borodovsky has remarked that this 
method also relaxes the control needed for mask defect density due to the much lower open area in a cut mask 
compared to a full interconnect mask. 

A similar problem for logic devices is the explosion of mask count to pattern critical contact and via layers. As the 
SRAM cache horizontal and vertical pitches shrink from 28nm to 20nm to 14nm node, the number of masks 
required to pattern the contact layer grows from one to two to three. This is seen in Figure 3 (work from joint 
collaboration between IMEC and ASML – ref. 16). Considering that there can be several such critical layers in the 
most advanced logic devices, this can add extraordinary cost and cycle time to the manufacturing process. Again, the 
need for a direct EUV single exposure  is very apparent. 

 

 

Figure 2: Design restrictions required for 193 nm extensions                       Figure 3: SRAM contact  scaling with 193i (16) 
 (14, 15)              
 
 
In memories there are similar considerations that drive the transition from immersion to EUV. In the floating gate 
NAND flash memory, below 19nm node, the chipmaker must use quadruple patterning (QPT) with immersion to 
pattern the wordline layer. The consequences of this are shown in Table 3 which contrasts the expected CDU and 
LWR budgets, as well as the number of masks and process steps required for the following lithographic options: 
EUV SE, EUV + SPT, and ArFi QPT, both positive and negative tone. In QPT, there are three separate CD 
populations within a repeating range of 8 wordlines which can lead to very significant device performance issues. 
Up to 4 masks may be required to form the layer:  two sacrificial masks plus two trim masks to take away undesired 
spacer features. Compared with a single mask and etch for high NA EUV this is very unattractive. However, the 
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NAND roadmap has been so aggressive that EUV is not yet ready to deliver the required resolution in a single 
exposure while 15nm class NAND may already be on the market in 2012. However, EUV + SPT can deliver the 
required resolution. 
 
Finally, as in logic, EUV is an attractive technology for patterning small densely packed contact holes in the NAND 
flash. Figure 4 shows that 0.25NA EUV can easily resolve 30nm holes on a 40nm staggered pitch with a good 
process window of > 100nm DOF and > 16% EL. 
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       Table 3: CDU andLWR budgets for process options                     Figure 4: 0.25NA SE EUV (ADT) NAND-Flash contact holes 

            for 15nm NAND Wordline (WL) mask 
 

 
 

3. NXE:3100 EUV SCANNER IMAGING, OVERLAY, AND PRODUCTIVITY 

 

NXE:3100 imaging has been tested  in chemically amplified resist (CAR). Examples here use Shin-Etsu SEVR-140, 
50nm thick, developed in standard TMAH. Figure 5 shows the process windows for 21 and 22nm lines and spaces, 
using full aperture of 0.25 and dipole illumination. Depth of focus of 150nm and 200nm and exposure latitudes of 
8% and 12%, respectively, are achieved at doses of 17.5 and 14.5 mJ/cm2. Imaging in a unique inorganic negative-
tone material supplied by Inpria (17), resolution down to 18nm L/S is achieved, however at a much higher dose (~70 
mJ/cm2). These results show excellent single exposure (SE) resolution extension compared to 193nm immersion 
where the SE imaging cutoff is around 37nm L/S for the highest available NA of 1.35. 

Resist will continue to play a key role in enabling EUVL. Images in the Inpria material exposed on the MET tool at 
Berkeley at 0.3NA show modulation down to 12.5nm L/S (Figure 6 left). On the right in Figure 6, 15nm L/S are 
produced using a spacer double patterning (SPT) process in which the NXE:3100 did the sacrificial exposure at 
30nm L/S in CAR (18). SPT has the advantage of improving the initial linewidth roughness of the pattern in resist 
and because the first exposure is done at a reasonably large size, the dose is relatively modest (12 mJ/cm2). 

Overlay on the NXE:3100 has been tested. Overlay to a dry ArF scanner shows less than 7nm overlay over 4 wafers 
(see Figure 7 left). This type of test is a realistic method to gauge the ability of the EUV tool to be used in a mixed 
fab environment where the starting layer in the process is typically done with dry ArF. On the right in Figure 7, the 
ability of the tool to overlay to itself is tested using dedicated chuck overlay, or DCO (NXE:3100 is a dual stage 
system as in the TWINSCAN platform used for KrF and ArF scanners. In DCO the wafer has both layers exposed 
on the same chuck). These results indicate DCO of less than 4nm is achieved over two wafers. 

So, the imaging and overlay are good, and supports the requirements for device fabrication. This allows chipmakers 
to use these tools to learn and develop their processes and prepare for inserting EUV into high volume production in 
the 2013 and 2014 time frame. For that they need to expose more wafers per hour and we need a more powerful light 
source. We are working with three EUV source suppliers, Cymer, Gigaphoton, and Ushio. The first two are 
developing laser produced plasma (LPP) sources, while the third is developing a discharge produced plasma (DPP) 
source. Figure 8 shows photographs of these three sources. The tool can now produce throughputs in the mid-teens 
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Co-managing EUV productivity with source suppliers 
to > 200 wafers/day at customers

Ushio

Cymer

GigaPhoton

per hour which has been demonstrated and repeated on a fully integrated pilot system in our factory in Veldhoven. 
Further improvements have been demonstrated in an R&D environment at Cymer and Ushio. 

 

 

Figure 5: 18 nm imaging achieved on NXE:3100 at NA 0.25             Figure 6: Extension of EUV resist is progressing but remains 
With dipole illuminatin in negative tone inorganic resist (17).           a challenge. High resolution shown in inorganic resist 
21 nm L/S with 8% EL and 150 nm DOF in chemically ampli-          (Inpria-17). Spacer double patterning can improve linewidth 
fied resist.                 roughness for 15 nm L/S. 

 
 
 

 
Figure 7:EUV to dry 193 Overlay measured at 6.5 nm                      Figure 8:Co-managing EUV productivity with  EUV                
(NXE:3100 to XT:1450)                               source  suppliers (Ushio DPP; Cymer and Gigaphoton LPP) 
                       
 
 

4. EUV MASKS FOR 1X NM DEVICES 

 
EUV masks enjoy many of the same attributes as projection masks for ArF immersion lithography. They have the 
same dimensions and are 4X demagnified. This is very key to their eventual use as they can be written, processed, 
handled, cleaned, and inspected in many of the same tools as are used today in modern mask shops. However, there 
are several key differences as well, the most important of which is the mask is reflective rather than transmissive. 
The mask blank consists of many dozens of multilayers of Mo and Si deposited on a LTE substrate, constituting a 
Bragg reflector which achieves about 60-70% reflectivity at 13.5nm. Ta-based materials are used as an absorber over 
the multilayer (replacing chrome or MoSi absorber in an DUV mask). Finally, because EUV light is strongly 
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absorbed by most materials, there is currently no pellicle for the EUV mask which has serious implications for mask 
cleanliness and handling. Many of these issues are covered in other papers in this conference and will not be 
discussed further here. 

Unique mask and scanner interactions in EUVL include shadowing and flare. Mask shadowing occurs because the 
light falls on the mask at an average angle of 6 degrees due to the catoptric lens design. Since the effect is easily 
modeled, it can be incorporated in an OPC model for mask compensation. Flare due to scattering of light from the 
polished mirror surfaces is also a well-understood effect. Figure 10 shows experimental measurement of flare for the 
NXE:3100 tool, indicating flare of under 5% for 2mm bars, substantially better than the performance of the ADT. 
Figures 11 and 12 show the experimental data for through slit and through scan flare for both ADT and NXE:3100, 
indicating an improvement of about 3X. Simulations done with Brion’s Tachyon computational lithography software 
show excellent agreement with the data, indicating that flare is well-understood and modeled (19).  

 

 
 

Figure 9:NXE:3100 imaging optimized with specific OPC              Figure 10: NXE:3100 Flare measurement is < 5%  under 2mm                             
(19)                 bar (19)   
                                            

 

 

 

Figure 11: Through slit flare simulations vs. wafer              Figure 12: Through scan flare simulations vs. wafer 
measurements (19)       measurements (19) 
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Finally, the integrated performance of optimized masks and the NXE:3100 is illustrated for several device layer 
examples. Figure 13 shows the 20nm NAND contact hole layer. Figure 14 shows the CD uniformity of several 
features in an SRAM metal 1 mask at 18nm node, while Figure 15 shows CDU for 16nm node contact holes. Figure 
16 shows the imaging fidelity for contacts and metal 1 trenches for a sub 16nm node SRAM. 
 
 
                                                                       
                                 

          Figure 13:20 nm node flash contact layer     Figure 14:18nm node SRAM Metal < 3.0nm IF CDU 
(0.060mm2 cell) 

 

 

 

     Figure 15:16nm SRAM C/H < 3.4nm Intrafield CDU                           Figure 16:Sub 16nm node SRAM C/H and metal-1                       
                                      exposed on NXE:3100 
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CONCLUSIONS 

 
Performance improvements and density increases continue in memory and logic devices driven by the lithographic 
shrink. Moore’s Law can be expected to extend to 2018 at least. 193nm immersion and multiple patterning can 
support 2X nm device manufacturing but at expense of excessive design constraints, extended cycle times, and 
extreme mask complexity. EUVL shows the promise of succeeding 193nm in imaging and overlay. 

ASML EUV scanners are now inserted into device development lines. These tools show their capability to meet the 
challenging device requirements for imaging and overlay. Next generation scanners with resolution and overlay 
capability to produce 1X nm memory and logic devices are in preparation. 

Many challenges remain for EUVL, the principal of which are 

• Source power enabling high productivity 

• Volume mask business encouraging rapid learning cycles 

• Improved resist performance capable of sub 20nm resolution 
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