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Abstract. The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its
optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the
quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on
the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light
propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to
implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries
based on their greatest optical path difference gradients. These contour chains correspond to the highest image
phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their sta-
tistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/
or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells
from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells
by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia. © 2015 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.9.096005]
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1 Introduction
During the last several decades, identification of the physical
properties of single living cells has been a subject of consider-
able interest for cytopathology diagnoses.1–5 In particular, quan-
titative optical microscopic methods3,6,7 have shown that the
refractive index (RI) of a cell can be used as an indicator for
cell transformation in cancer processes. By offering the possibil-
ity of recovering the global and local RIs of a living cell without
any a priori treatment by staining agents,8–12 the development of
quantitative phase microscopy (QPM) techniques is likely to
shed a new light on the internal organization of different cell
types.1,3,7,8,13–20 In addition to the measurements of the averaged
RIs over the whole cells, the intracellular distribution of RIs
revealed by QPM provides quantitative information concerning
the internal heterogeneous complexity of living cells.8–12,21

In recent years, cell imaging has seen the emergence of
diverse microscopic setups suitable for living cell morphology
capture.1,9,17,20,22,23 Among them, diffraction phase microscopy
(DPM)23–25 has become a powerful tool for real-time analysis of
single cell morphology and the alteration of cells in diverse path-
ologies.20,23,26 However, with the exception of enucleated mature
red blood cells (RBCs), whose RI can be presupposed as homo-
geneous (at the resolution of optical microscopy), the extraction
of RIs from phase images often requires the use of rather complex
algorithms. Converting the optical phase computed from the

images of a QPM to an RI distribution in three dimensions
(3-D) is quite impossible with a single wavelength measure-
ment. Two-wavelength microscopes have been proposed to cir-
cumvent this limitation.27 In some conditions, it is possible to
include the effect of diffraction in the reconstruction process
of high-resolution 3-D images throughout the entire sample
volume.7,28,29 More recently, elegant and relatively simple and
low-cost methods have been proposed30–32 for tomographic
reconstruction of living cells. When the 3-D shape of the cell
can be established a priori, the computation of RIs from
phase images is then possible. Nonadherent cells in liquid gen-
erally adopt a spherical shape, which facilitates the inversion
problem. We will use this assumption in this study for the char-
acterization of blood cells.

Here, we aim at developing an original method for the detec-
tion of optical path difference (OPD) contours from living cells.
The underlying idea is to look for local maxima of the OPD
derivative in the two-dimensional (2-D) optical phase image.
These maxima define interface chains where the RI and/or
the cell shape vary abruptly and can be considered as domain
boundaries. Even if we do not know a priori which is the promi-
nent variation (RI or thickness) at each maximum, the connec-
tivity of these maxima provides a direct access to the complexity
of the cell interior. Because living cells are made of crowded
macromolecules which may condensate or dilute at some stages
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of their lifespan, to assist global processes, such as growth, chro-
matin condensation, cell division, invasion, apoptosis, and
migration, their internal structure bears a rather high level of
complexity. Our study shows that except in some rare cases
(RBCs), living blood cells are not partitioned into subdomains
by isotropic and smooth contours, but rather look like randomly
distributed contours with a broad distribution of lengths.

2 Materials and Methods

2.1 Diffraction Phase Microscope

Our DPM (Fig. 1) is directly inspired from the system published
in Ref. 24. This interference microscope combines both off-axis
and common-path interferometry techniques to produce fringe
patterns [Fig. 1(a)] from which the phase images [Fig. 1(d)] can
be reconstructed. The optical system is very compact and stable
and does not require an expensive laser source [for instance, a
laser-diode (Thorlabs, GmbH, Germany) with a wavelength
λ ¼ 532 nm]. It can be coupled to a fast image recording system
(e.g., a CMOS camera, Hamamatsu, Japan, ORCA-Flash 4.0)
with a 2048 × 2048 pixel grid. A Köhler illumination33 is
required to obtain an extremely even illumination and to
avoid any perturbation of the sample image by the image of
the light source at the image plane (IP) [Fig. 1(f)]. The interfer-
ences are obtained by combining a transmission grating (G)
(110 grooves∕mm), localized at the IP of the microscope, with
a spatial filter (Thorlabs, custom-made) placed at the Fourier
plane of lens L1 that selects the first-order beam (imaging
field) created by the grating and low-pass filters the zeroth-order

beam (reference). The two beams are recombined through a sec-
ond Fourier lens L2. This 4f lens system adds a 5.9× magnifi-
cation (f1 ¼ 25.4 mm, f2 ¼ 150 mm). The spatial filter consists
of two circular apertures with diameters of 1 and 15 μm [Fig. 1
(f)]. The objective lens (O) 40× (Olympus, SPlan40, NA ¼ 0.7)
allows a field of view of 75 μm. Prior to image capture, 65 μL of
the solution containing the cells are poured between two glass
coverslips glued by a Gene Frame Seal (Thermo Scientific
AB-0577). Images are captured on the CMOS camera within
the next 15 min of preparation at room temperature T ∼ 22°C.
A reference image of the background next to the area containing
the cell is also recorded for each image.

2.2 Cell Culture

2.2.1 Hematopoietic cell line model

The immature CD34+ TF1 cell line (ATCC CRL-2003) was
maintained at 1 × 105 cells∕mL in RPMI-1640 medium, 10%
fetal calf serum, and granulocyte macrophage colony-stimulat-
ing factor (10 ng∕mL) (Sandoz Pharmaceuticals). Engineered
TF1-GFP and TF1-BCR-ABL-GFP cell lines were obtained
by transduction with a murine stem cell virus-based retroviral
vector, encoding either the enhanced green fluorescent protein
(EGFP) cDNA alone as a control or the BCR/ABL-cDNA
upstream from an IRES-eGFP sequence, as described in Ref. 34.
EGFP+ TF1 cells were sorted using a Becton Dickinson
FACSAria. For imaging, 65 μL of the solution were poured
between two glass coverslips glued by a Gene Frame
(ThermoScientific). The images were taken from two different

Fig. 1 Diffraction phase microscopy (DPM) principle: (a) untreated DPM image of a nonadherent imma-
ture myeloid cell (TF1-GFP). Scale bar: 5 μm; (b) intensity profile of the section marked with a white
dashed line in (a); (c) space-scale representation of the modulus of the wavelet transform (WT)
jTΨ½I�jðb; aÞ of the section shown in (b); with a black dashed line we distinguish the wavelet transform
modulus maxima (WTMM) profile. Note that we label the horizontal axis with the same variable x to align
the two signals (image section and WT), in that representation b ¼ x ; (d) ∂ϕðbÞ∕∂x computed for each
line of the original phase image with the method illustrated in (c), the gray coding spans the interval [−2.7
to 5.4] rad∕μm; (e) color-coded optical path difference (OPD)Φ ¼ ϕλ∕2π (in nm) computed from the argu-
ments AΨ½I�ðb; a�Þ of the WT at the scale a� corresponding to a maximum of its modulus; and (f) DPM
optical setup (see text).
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cell batches per cell line type (TF1-GFP or TF1-BCR-ABL-
GFP), and the total numbers of cells analyzed were 298
TF1-BCR-ABL-GFP (short name: TF1-BA) cells and 263
TF1-GFP cells.

2.2.2 Human primary cells (nucleated immature cells and
red blood cells)

After informed consent in accordance with the Declaration of
Helsinki and local ethics committee bylaws (from the
Délégation à la recherche clinique des Hospices Civils de Lyon,
Lyon, France), peripheral blood and bone marrow samples were
obtained from chronic myelogeneous leukemia patients.
Mononuclear cells were separated using a Ficoll gradient
(Bio-Whittaker) and were then subjected to CD34 immunomag-
netic separation (Stemcell Technologies). The purity of the
CD34+-enriched fraction was checked by flow cytometry and
was over 95% on average.

3 Diffraction Phase Microscopy Image
Analysis with a Wavelet-Based Multiscale
Analyzing Method

3.1 Diffraction Phase Microscopy Principle for Cell
Imaging

DPM23–25 allows a fast, nonintrusive, and high-sensitive meas-
urement of the OPD produced by a transparent object embedded
inside a homogeneous medium. The DPM optical setup
sketched in Fig. 1(f) produces 2-D images with parallel fringe
patterns [Fig. 1(a)] corresponding to a periodic modulation of
the intensity:

EQ-TARGET;temp:intralink-;e001;63;391IðxÞ ¼ PðxÞ þQðxÞ cos½fgxþ ϕðxÞ�; (1)

where ϕðxÞ is the optical phase due to light transmission through
the object at point x ¼ ðx; yÞ, PðxÞ and QðxÞ are, respectively,
the unmodulated and modulated intensities at the same point of
the image, and fg is the spatial frequency of the diffraction gra-
ting. One common assumption is that PðxÞ and QðxÞ vary much
more slowly than ϕðxÞ.9,17,20,23,26 However, this is rarely the case
with thick spherical cells, since they produce modulations of
both the optical phase ϕ and the amplitude Q [Figs. 1(a) and
1(b)]. To circumvent this difficulty, we computed the ridges
[wavelet transform modulus maxima (WTMM) lines] from
the wavelet transform (WT) of the fringe image with a 2-D
anisotropic Morlet analyzing wavelet.35–40 The implementation
of this method on DPM has been recently published36 and
shown to surpass more traditional Hilbert methods41 when the
amplitude modulation QðxÞ spans the frequencies that mix with
the carrier frequency (fg). In Fig. 1(c), we show the space-scale
representation of the WTmodulus computed from the horizontal
section [Fig. 1(b)] of the fringe image in Fig. 1(a) (a ¼ 1 cor-
responds to the fringe carrier frequency). The black dashed line
outlines the position of the WTMM line. The scale a of the
WTMM is proportional to the inverse of the derivative of the
object phase f∂½fgxþ ϕðxÞ�∕∂xg and directly gives the
image of the phase derivative shown in Fig. 1(d). The optical
phase ϕ at position x is given by the integral:

EQ-TARGET;temp:intralink-;e002;63;95ϕðxÞ ¼ 2π

λ

Z
zMðxÞ

zmðxÞ
Δnðx; zÞdz; (2)

where λ is the illumination wavelength, Δn ¼ n − n0 is the dif-
ference between the RIs of the object (n) and the external
medium (n0), and zM (respectively, zm) is the upper (respec-
tively, lower) bound of the object at position x. The total thick-
ness of the object at point x is hðxÞ ¼ zMðxÞ − zmðxÞ. The
recovery of ΔnðxÞ from the phase map ϕðxÞ amounts to solving
an inverse problem.21,42 This is quite difficult without any
assumption on the topography of the object, except in the
case where the internal RI of the object is constant. This actually
occurs for RBCs, for which we will be able to recover the shape
of the cell from its fringe pattern26 (see below). Nucleated cells
involve a much more heterogeneous internal structure that
requires a more complex reconstruction algorithm. Given that
the optical phase ϕ depends on the illumination wavelength, in
practice it is more convenient to work with the OPD:
Φ ¼ ϕλ∕2π. The OPD is equivalent to the retardation path
length of the light after crossing the cell. According to Eq. (2),
the OPD function is the integral on the RI drop through the cell
whose limits of integration depend on the point x:

EQ-TARGET;temp:intralink-;e003;326;525ΦðxÞ ¼
Z

zMðxÞ

zmðxÞ
Δnðx; zÞdz ¼ ½ΔNðx; zÞ�zMðxÞ

zmðxÞ

¼ ΔNðx; zMÞ − ΔNðx; zmÞ; (3)

where ΔNðx; zÞ is the integral function of Δnðx; zÞ. For exam-
ple, if Δnðx; zÞ ¼ Cst, ΔNðx; zÞ ¼ Cstzþ B is a linear function
of the variable z and ΦðxÞ ¼ Cst½zMðxÞ − zmðxÞ� ¼ CsthðxÞ.
The OPD function precisely follows the shape of the object and
its derivative is proportional to the derivative of its thickness h at
each point x. In general, the derivative of Φ along a radial coor-
dinate of the ðx; yÞ plane results from both RI and topography
variations:

EQ-TARGET;temp:intralink-;e004;326;378

∂ΦðxÞ
∂r

¼ ∂ΔNðx; zMÞ
∂r

−
∂ΔNðx; zmÞ

∂r
: (4)

If Δn is an integrable function, the two integral values
ΔNðx; zMÞ and ΔNðx; zmÞ exist and their derivatives with
respect to r can be computed. The boundary of the object is pre-
cisely defined by an abrupt change in the RI slope at the inter-
face between the interior and the exterior media. Because
domain boundaries in biological matter are not very sharp,
we will rather consider them as transitory zones with a sharpness
described by the gradient of the OPD. The local maxima of this
OPD spatial gradient will follow the boundary zones wherever
they can be detected (external and internal). If we consider that
the object is made of the assembly of different internal structures
with RI variations, we will apply the same assumption as above
for the domain boundary detection. The main difficulty will,
therefore, be to correctly compute these spatial gradients and
extract local maxima lines. If the maxima lines are closed, we
will infer the existence of well-defined internal structures with a
quite homogeneous composition. On the contrary, if the maxima
lines are unclosed and randomly distributed curves, we will
rather infer a more complex organization of the internal structure
of the considered object.

3.2 Diffraction Phase Microscopy Analysis of Model
Spherical Cells

Let us first consider as a theoretical example, a spherical object
of radius R with a radial RI function varying from n0 (the outer
medium) to nC (at the center of the sphere):
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EQ-TARGET;temp:intralink-;e005;63;734Δnðx; zÞ ¼
� jðR − rÞ∕RjαΔnC for r ≤ R;
0 for r > R;

(5)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
the radial distance, ΔnC ¼ nC − n0,

and α a real positive exponent. We consider only the positive
values of z [the object is symmetric in respect to the equatorial
plane ðx; yÞ]. The boundaries of the sphere at position x are such
that x2 þ y2 ≤ R2 are

EQ-TARGET;temp:intralink-;e006;63;644

zmðxÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
and

zMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
: (6)

Centering the three vector bases (~ex, ~ey, and ~ez) at the center of
the sphere (xC ¼ 0, yC ¼ 0, and zC ¼ 0), we plot in Fig. 2(a) the
RI profile along the x (y ¼ 0) axis in green for different values
of the exponent α in Eq. (5), namely α ¼ 0 (solid line), 0.25
(dashed-dotted line), 0.5 (dotted line), and superimposed to
the sphere height profile (black dashed-dotted line).

The OPD of this spherical object at position xwith x2 þ y2 ≤
R2 is given by

EQ-TARGET;temp:intralink-;e007;63;493ΦðxÞ ¼ ΔnC
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2−ðx2þy2Þ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−ðx2þy2Þ

p
����
�
R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q �
∕R

����
α

dz:

(7)

The three OPD functions corresponding to α ¼ 0, 0.25, and 0.5
are plotted in green in Fig. 2(b) with the same line style as in
Fig. 2(a). When the RI is increasing monotonously from the

border to the center of the sphere, the OPD Φðx; y ¼ yCÞ retains
a global single humped shape, with a nonlinearity that depends
on the exponent α. The local maxima of the first derivative of the
OPD functions with respect to x are close to the position of the
sphere’s border. Note also that the OPD functions are symmet-
rical with respect to the center of the sphere, retaining the cen-
trosymmetry of the object. In that example, we have computed
the first derivative of the OPD with a smoothing first derivative
of a Gaussian function, as further used in the experimental sit-
uations reported hereafter. Thus, the slight shift of the maxima
of the red curves ∂Φ∕∂x from the sphere borders (dashed blue
line) is due to the smoothing scale of this Gaussian filtering.

To mimic an internal variation of the RI, we have constructed
another structure with the same outer spherical shape, but con-
taining an internal concentric spherical shell with a higher RI,
the boundary of which also varyies smoothly with the radius r:

EQ-TARGET;temp:intralink-;e008;326;558Δnðx; zÞ

¼
� ½jfðrÞjα þ fcos½2πfðrÞ� − 1g2∕6�ΔnC for r ≤ R;
0 for r > R;

(8)

where fðrÞ ¼ ½R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þ∕R�. As shown in Fig. 2(c),

the corresponding RI profiles for α ¼ 0, 0.25 and 0.5 bear two
supplementary local maxima at x ¼ −2 μm and 2 μm, which
are superimposed to the smoothly increasing profile [similar to
those in Fig. 2(a)]. The corresponding Φ and ∂Φ∕∂x profiles
plotted in Fig. 2(d) are very instructive, since they show that
the combination of both the spherical shape and nonmonotonous
RI profiles may lead to an unexpected behavior. In the situation

(a) (b)

(c) (d)

n(
x,

y=
y C

,z
=

z C
)

n(
x,

y=
y C

,z
=

z C
)

Fig. 2 OPD and OPD derivative functions for spherical shell models with radial RI profiles: (a) monoto-
nously increasing (or constant) RI profiles Δnðx; y ¼ yC ; z ¼ zCÞ (from the border to the center) given by
Eq. (5); (b) corresponding ΦðxÞ (green lines) and ∂Φ∕∂x (red lines) computed from the profiles in (a),
using the first derivative of the Gaussian function as smoothing analysing wavelet (see text); (c) nonmo-
notonously increasing RI profiles Δnðx; y ¼ yC; z ¼ zC Þ described by Eq. (8); and (d) ΦðxÞ (green lines)
and ∂Φ∕∂x (red lines) computed as before from the profiles in (c). α ¼ 0 (respectively 0.25 and 0.5) is
plotted with a green solid (respectively dashed-dotted and dotted) line. The underlying sphere shape is
reported with a black dashed-dotted line. xC ¼ 0, yC ¼ 0, and zC ¼ 0 correspond to the center of the
sphere.
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shown here, not only the underlying object spherical shape is
smeared out, but the local maxima of the index profile are
also strongly damped, giving place to a quasi OPD plateau in
the middle interval [−2 μm, 2 μm]; the higher α is, the flatter
this plateau.

From this last model, we conclude that trusting the OPD iso-
contours to delineate regions of different RIs from a recon-
structed phase image may be totally misleading even though
we can still recover some information on the boundary (internal
and external) properties with the computation of the local
derivative of the OPD function.

3.3 Multiscale Method Based on the Continuous
Two-Dimensional Wavelet Transform

Given that the OPD images are 2-D, computation of the deriv-
atives must be performed along both directions x and y and
ideally we must also include in the computation the possibility
to smooth out the enhanced noise that could come from the
derivative procedure. As originally noticed by Mallat and
coworkers,43,44 the 2-D WT45–47 can be used to revisit
Canny’s multiscale edge detector.48 The principle of this analy-
sis is to smooth the image by convolving it with a filter and then
to compute the gradient of the smoothed image. Let us consider
the two wavelets defined respectively as the partial derivatives
with respect to x and y of a 2-D smoothing function ψðxÞ:

EQ-TARGET;temp:intralink-;e009;63;451Ψ1 ¼
∂ψðxÞ
∂x

and Ψ2 ¼
∂ψðxÞ
∂y

: (9)

The smoothing function ψ must be well localized (around
x ¼ y ¼ 0), isotropic, and dependent on the modulus of x
only. The Gaussian function is the mostly used function that ful-
fills these conditions:

EQ-TARGET;temp:intralink-;e010;63;363ψðxÞ ¼ e−ðx2þy2Þ∕2: (10)

The WT of any 2-D function ΦðxÞ [which is embedded in
L2ðRÞ] with respect to the analyzing wavelets Ψ ¼ ðΨ1;Ψ2Þ
has two components and can be expressed in a vectorial form:

EQ-TARGET;temp:intralink-;e011;63;298TΨ½Φ�ðb; aÞ ¼
�
TΨ1

½Φ� ¼ a−2
R
d2xΨ1½a−1ðx − bÞ�ΦðxÞ

TΨ2
½Φ� ¼ a−2

R
d2xΨ2½a−1ðx − bÞ�ΦðxÞ

�
:

(11)

By a straightforward integration by parts,45 this 2-D WT can be
rewritten as

EQ-TARGET;temp:intralink-;e012;63;217TΨ½Φ�ðb; aÞ ¼ a−2∇
�Z

d2xψ ½a−1ðx − bÞ�ΦðxÞg

¼ ∇fTψ ½Φ�ðb; aÞ
�

¼ ∇fψb;a �Φg: (12)

If ψðxÞ is a smoothing filter like the Gaussian function
[Eq. (10)], then Eq. (12) amounts to the computation of the
gradient vector of ΦðxÞ smoothed by dilated versions ψða−1xÞ
of this filter. If ψðxÞ has some vanishing moments, then
Tψ ½Φ�ðb; aÞ in Eq. (12) is the continuous 2-D wavelet (C2DWT)
of ΦðxÞ,35 provided that ψðxÞ is an isotropic analyzing wavelet.
Further on, we will compute the 2-DWTmodulusMΨ½Φ�ðb; aÞ
and its argument AΨ½Φ�ðb; aÞ:

EQ-TARGET;temp:intralink-;e013;326;734

MΨ½Φ�ðb; aÞ ¼ jTΨ½Φ�ðb; aÞj;
¼ f½TΨ1

½Φ�ðb; aÞ�2 þ ½TΨ2
½Φ�ðb; aÞ�2g1∕2;

(13)

and

EQ-TARGET;temp:intralink-;e014;326;665AΨ½Φ�ðb; aÞ ¼ Arg½TΨ1
½Φ�ðb; aÞ þ iTΨ2

½Φ�ðb; aÞ�: (14)

In practice, at a given scale a, we first compute the 2-D fast
Fourier transform (FFT) of Ψ1 and Ψ2 and we multiply these
images by the FFTofΦ: Ψ̃1 · Φ̃ and Ψ̃2 · Φ̃ and from the inverse
FFT of these products, we get the WTs TΨ1

½Φ� and TΨ2
½Φ�. We

then identify the so-called WTMM as the points b, where the
modulus MΨ½Φ�ðb; aÞ is locally maximum for a given scale
a�. To increase the resolution of this local maxima detection,
we transform the pixelated images into radial representations.
To switch from Cartesian to cylindrical geometry, we interpolate
the WT argument and modulus on 1440 radial axes crossing the
center of the cell with an angular shift of δθ ¼ 4.410−3 rad. On
each of these rotating axes with θ varying from 0 to 2π, we inter-
polate each pixelated image along the radial variable r with a
spatial resolution dr ¼ 1.8 nm. This allows a very acute deter-
mination of both the local angle θ and the argument AΨ of the
WT vector. From the radial coordinates of the WTMMs, we
reconstruct maxima chains as 2-D curves made of a sequence
of neighboring points (distant of less than 2rδθ).

When the maxima chain is circular [Fig. 3(a)] and the
WT vector TΨ½Φ�ðb; aÞ is oriented outward [blue arrows in
Fig. 3(a)], the argument of the WT is equal to the radial angle
θ, Δθ ¼ AΨ½Φ�WTMM − θ ¼ 0 [Fig. 3(b), blue circles]. If the
WT vector is oriented inward [magenta arrows in [Fig. 3(a)],
the argument is equal to π [Fig. 3(b), magenta circles]. If instead
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Fig. 3 WT argument for a spheroid and an ellipsoid cell model: (a) cir-
cular chain model with outward (respectively inward) WT vectors
[TΨ½Φ�ðr; aÞ�; (b) Δθ ¼ AΨ½Φ�WTMM − θ on the WTMM chain line in
(a); (c) ellipsoidal chain model with outward and inward wavelet vec-
tors; and (d) Δθ ¼ AΨ½Φ�WTMM − θ on the WTMM chain line in (c). The
outward (respectively inward) vectors in (a) and (c) correspond to blue
(respectively magenta) circles in (b) and (d).
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we take an ellipsoidal-shaped maxima chain [Fig. 3(c)], the
argument of the WT is no longer a constant function versus the
angle θ. Again we consider the two cases of outward WT vector
[blue arrows in Fig. 3(c) and blue circles in Fig. 3(d)] and inward
WT vector [magenta arrows in Fig. 3(c) and magenta circles in
Fig. 3(d)]. It is important to note that when the WTMM chain
deviates from a circular contour, the angle difference Δθ may
oscillate versus the radial angle θ, with alternating increasing
(θ < 0.15π) and decreasing (0.15π < θ < 0.85π) intervals in
Fig. 3(d). The flatter the shape of the chain, the larger the
slope of these curves (in absolute values). The positive slopes
of Δθ versus θ curves (which may reach vertical lines) corre-
spond to highly curved chains (compared with a circle), whereas
the negative slopes correspond to flatter chains (compared with a
circle).

3.4 Wavelet-Based Analysis of Model Spherical
Cells with Noise

We illustrate the WTMMmethod for detecting the local maxima
chains from noisy data, taking again the previous model of a
spherical object with an internal spherical shell of higher RI
[Eq. (8)], adding a white noise term to the RI function before
computing the OPD image:
EQ-TARGET;temp:intralink-;e015;63;473

Δnðx; zÞ

¼
�fjfðrÞjα þfcos½2πfðrÞ�− 1g2∕6þ ζgΔnC for r ≤ R;

ζ for r > R
:

(15)

ζ is a uniformly distributed random variable (MATLAB random
generator rand) in the ½−1∕10;1∕10� interval, giving a standard

deviation of ζ that we fix to 2.8%. We report in Fig. 4 the WT
modulus and the local WTMM for two scales a of the analyzing
wavelet computed from the noisy shell model [Eq. (15)]. From
the OPD image [Fig. 4(d)] and its x-section through the central
point (x ¼ xC, y ¼ yC) [Fig. 4(a), green line], we do not see
much difference from the noise-free profile in Fig. 2(d).
However, when computing the derivative with a small value of
the scale parameter a [red curve in Fig. 4(a) and 2-D image of
Fig. 4(b)], we notice that the background white noise that we
have added to the RI introduces fluctuations that dramatically
perturb the detection of the local maxima of the WT modulus
[Fig. 4(c)]. To circumvent this problem, we follow a strategy
recommended in Ref. 49 which amounts to increasing the
scale parameter a until the number of local maxima chains no
longer changes and their structure becomes more regular and
robust. In that simple theoretical example, by simply increasing
the scale a by a factor of 5 [Fig. 4(e)], we get the three expected
maxima chain lines corresponding respectively to the outer
boundary and the two (internal and external) boundaries on
the internal concentric shell of a higher RI [Fig. 4(f)]. In this
example, once the scale a is chosen correctly to smooth down
the background noise, the maxima lines predicted by the model
are recovered.

4 Application of the Wavelet Transform
Modulus Maxima Method to Diffraction
Phase Microscopy Images of Living Cells

To test the WTMM detection of phase boundary contours on
DPM images of living cells, we first considered RBCs as an
example of anucleated cells with an almost homogeneous cyto-
plasm (RI ∼ 1.401� 0.006)50–52 with a high concentration of
hemoglobin. The shape of healthy, unstressed RBCs has been
fully described in the literature26,52–55 with a biconcave equation

Fig. 4 WTMM chain line detection from the OPD of a spherical cell model with noise: (a) OPD ΦðxÞ
(green line) computed from model [Eq. (15)] for α ¼ 0.25 and its WT modulus MΨ½Φ�ðb; aÞ estimated
for two scales a ¼ 2 (red) and 10 (magenta dashed line); (b) two-dimensional (2-D) color-coded
image of MΨ½Φ� for a ¼ 2, color coded from dark blue to red in the interval [0, 0.001]; (c) local maxima
of MΨ½Φ� for a ¼ 2; (d) 2-D color-coded representation of Φ (in the interval [0, 133 nm]), computed from
model [Eq. (15)]; (e) 2-D color-coded image of MΨ½Φ� for a ¼ 10, color coded in the interval [0, 0.001];
and (f) local maxima of MΨ½Φ� for a ¼ 10.
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for their thickness h versus the radial coordinate r, as observed
experimentally in isotonic buffers:
EQ-TARGET;temp:intralink-;e016;63;712

hðrÞ ¼ zM − zm ¼
�
1 −

�
2r
d

�
2
	
1∕2

×
�
0.72þ 4.512

�
2r
d

�
2

− 3.426

�
2r
d

�
4
	
: (16)

4.1 Red Blood Cells

A typical healthy RBC has a maximum and minimum thick-
nesses of 2.84 and 1.44 μm, respectively, and a diameter d ¼
7.5� 0.5 μm. We recognize in Fig. 5(a) the characteristic
OPD “donut” shape of a RBC,26,55 with a central hole and cylin-
drical symmetry. This example is particularly interesting to test
the performance of WTMM detection method, as shown in
Figs. 5(b)–5(d). Figure 5(c) shows the corresponding sections
of Φ (green) and MΨ½Φ� (red) along the x direction, taken at
the barycenter of the cell. The experimental green profile in
Fig. 5(c) is in very good agreement with the biconcave shape
(black line) predicted by Eq. (16). This method detects two
WTMM chains, one exterior and one interior. Note that the
exterior WTMM chain is color coded in hot (red to brown
red) colors in Fig. 5(d) as an indicator of larger modulus values
than the interior WTMM chain coded in cold (dark blue to blue)
colors. The plot of the argument of the WT AΨ½Φ� versus θ
along each of the two WTMM chains shows a clear separation
of the two chains [Fig. 5(e)]. The exterior chain corresponds
roughly to the diagonal (red to brown red color) and the interior
chain is globally shifted from the diagonal by π. This shift cor-
responds simply to the inward direction of the wavelet vector (as
already illustrated in Fig. 3). The two plots of the evolution of
Δθ ¼ AΨ½Φ� − θ in Fig. 5(f) for each WTMM chain confirm the
reversal of the direction of the wavelet vector from the outer to

the inner WTMM chain. Indeed this vector gives the direction of
the steepest descent of the WT modulus. More interestingly, we
note that the fluctuations of Δθ on the inner chain are much
larger than on the outer chain, meaning a more irregular shape
(loss of circularity) distribution of the internal part of this cell.
Given the predicted minimal thickness of a RBC,26,52–55

hmin ∼ 1.44 μm, we can use the averaged Φ values in the hole
of this RBC Φmin ¼ 90� 5 nm ¼ hminΔn to estimate the RI
drop: Δn ¼ 0.063� 0.004, leading to the following estimate
of the RBC RI: n ¼ 1.333þ 0.063 ¼ 1.396� 0.004.

4.2 Primary Immature Blood Cells

We consider now spherical mononucleated immature blood cells
(nonadherent). These CD34+ cells are sorted from the bone mar-
row or peripheral blood by the CD34 antigen; they are a mixture
of hematopoietic stem and progenitor cells with various degrees
of maturity. In healthy conditions, these cells remain mostly in
the bone marrow. In chronic myeloid leukemia (CML), these
immature cells can also be found in the blood. These cells
have a rather high nuclear:cytoplasmic ratio (N∶C) in the inter-
phase.56–58 This ratio indicates the maturity of the cell; for exam-
ple for immature leukocytes, it may reach 4∶1.59 If we assume
that the nucleus is a concentric sphere (which can be applied to
CD34+ cells) of the cell of radius RN , a 4∶1 N∶C would give
RN ¼ ð4∕5Þ1∕3 · RC ∼ 0.93RC (RC is the cell radius). If RC ¼
4 μm, this would give RN ¼ 3.7 μm, leaving only a 300-nm dis-
tance in between the outer cytoplasmic and the inner nuclear
membranes. Such a large nucleus should not be distinguishable
from the outer membrane shell in our microscope device, since
one fringe produced by the grating is too thick ∼400 nm (in the
scale of the cell). If the N∶C ratio drops to 3∶1, the radius of
the nucleus decreases only by 70 nm, which should also be
undetectable with our optical setup. The impact of the nucleus
should, therefore, only be visible on the amplitude of the OPD
Φ and/or its derivative. However, we should be able to detect

Fig. 5 WTMM chain detection from the OPD of a living red blood cell (RBC): (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 163 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.09]; (c) horizontal sections through the barycenter of the cell of the OPD Φ (green line)
and of MΨ½Φ� (red line). The black line corresponds to the biconcave shape predicted by Eq. (16);
(d) WTMM chains of the RBC cell shown in (a), color coded according to the value of MΨ½Φ�;
(e) plot of the argument AΨ½Φ�WTMM of the WTMM chains versus θ [same color coding as in (d)];
and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.

Journal of Biomedical Optics 096005-7 September 2015 • Vol. 20(9)

Martinez-Torres et al.: Deciphering the internal complexity of living cells with quantitative phase microscopy. . .



internal structures of the nuclei on this type of cells. Figure 6
illustrates the WTMM boundary detection on a rounded nonad-
herent living CD34+ cell. The outer boundary of this spherical
cell is detected straightforwardly by the maxima chain with
maximum mean hMΨ½Φ�WTMMi. While the external contour
of the cell is very circular [AΨ½Φ�WTMM versus θ is a straight
line in Fig. 6(e)], with few fluctuations [Fig. 6(f)], the internal
shape of Φ [Fig. 6(a)] presents a single slightly off-centered
small bump, leading to the conical shape of the Φ profile in
Fig. 6(c) (green line). If we fit the outer part of this Φ profile
by the prediction for a homogeneous sphere with radius RC ¼
4.5� 0.08 μm [α ¼ 0 in Eq. (7)]:

EQ-TARGET;temp:intralink-;e017;63;602ΦðxÞ ¼ 2ΔnC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx2 þ y2Þ

q
; (17)

we get the following estimate for its internal index: n ¼ 1.365�
0.004 [black line in Fig. 6(c)]. Another way to obtain an estimate
of the internal cell index is to compute the optical path volume
(OPV):

EQ-TARGET;temp:intralink-;e018;63;521OPV ¼
Z

yM

ym

Z
xM

xm

Z
zMðxÞ

zmðxÞ
Δnðx; y; zÞdz dx dy: (18)

For the discretized Φ images, we simply compute

EQ-TARGET;temp:intralink-;e019;63;465OPV ¼ Sxy

X
intra

OPD; (19)

where Sxy is the area of a pixel. For a homogeneous sphere with
RI drop Δn, the OPV is that of an oblate ellipsoid with height
RΔnC (z direction) and radius R in the ðx; yÞ plane:

EQ-TARGET;temp:intralink-;e020;63;389OPV ¼ 4

3
πR3

CΔnC ¼ VSΔnC; (20)

with VS the formal volume of the perfect spherical cell of the
same radius RC. From the OPD image of Fig. 6(a), we obtain

OPV ¼ 13.84 μm3, which with RC ¼ 4.5 μm leads to ΔnC ¼
0.0365� 0.005 and thus to a cell averaged RI n ¼ 1.369�
0.005. This estimation is better when matching the averaged
cell RI than the above estimation obtained from a single ΦðxÞ
profile since it embraces the whole cell phase topography.
Globally, we can conclude from this example that this primary
blood cell has an average RI which is not much larger than what
is known for eukaryotic cell cytoplasmic zones.60 This OPV is
an interesting quantity that will help us comparing different
cells. In particular, by dividing this OPV [Eq. (20)] by the pro-
jected area of the cell to the power 3∕2: S3∕2C ¼ ðPintraSxyÞ3∕2,
we get a dimensionless quantity that can be computed to com-
pare adherent and nonadherent cells:

EQ-TARGET;temp:intralink-;e021;326;591hΔn;effi ¼
�
3

ffiffiffiffiffi
4π

p
OPV∕S3∕2C

ΔnC; for spherical cells
: (21)

This quantity gives the same prediction for the cell RI as pre-
viously estimated, if the cell is spherical. If the cell is not spheri-
cal, this quantity provides some estimate of the effective density
of the cell and its flattening under adhesion; the flatter the cell
the smaller hΔn;effi gets.

The small off-centered dome of the CD34+ cell shown in
Fig. 6 corresponds to a higher density zone of the nucleus
which is mainly detectable by the WTMM method on its border
oriented toward the center of the cell image (computed from the
center of mass of the projected shadow of the cell image onto the
x plane, where its gradient is stronger). The outer contour of this
small dome is shrouded in the nuclear-extracellular borders and
is hardly detectable due to a limited number of fringes per
micrometer.

It is interesting to compare this WTMM analysis of a domed
CD34+ cell with a flatter CD34+ cell from the same bone mar-
row sample (Fig. 7). This new cell has an average radius of
5.53� 0.18 μm and is only 23% larger than the previous
CD34+ cell (Fig. 6). Its OPD topography is drastically different,
since its internal nucleus is more inhomogeneous with a larger

Fig. 6 WTMM method analysis of the OPD of a living domed CD34+ cell: (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 320 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.16]; (c) horizontal sections through the barycenter of the cell of the OPD Φ (green line)
and of MΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous sphere with
radius 4.5 μm and index n ¼ 1.365; (d) WTMM chains of the CD34+ cell shown in (a), color coded
according to the value of MΨ½Φ�; (e) plot of the argument AΨ½Φ�WTMM of the WTMM chains versus θ
[same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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set of WTMM chains. One may wonder if this roughening of the
internal core of the cell could be accounted for by its larger size,
which would facilitate the local maxima detection. Actually, the
threshold for local maxima detection is chosen to be small
enough (1 × 10−3) to collect all the local events given the wave-
let scale a. The occurrence of these WTMM chains is really
reflecting a modification of the internal structure of the cell.
Another way to confirm this transformation is to compare the
OPVs: in that latter case,OPV ¼ 13.3 μm3, which, surprisingly,
is very close to the OPVof the previous CD34+ cell. According
to Eq. (20), if we divide the OPV by the volume of the ideal
sphere with the same radius RC ¼ 5.53 μm (VS ¼ 708 μm3),
we get an average RI drop: ΔnC ¼ 0.0188� 0.005, leading to
a much smaller averaged RI of the cell: nC ¼ 1.352� 0.005.
Since the OPV remains invariant, we know that the total material
of the cell is not changed. This means that its apparent surface
and its internal structure have changed, possibly due to a local
condensation of the intranuclear material. Since we did not stain
the nucleus to avoid any alteration of the cell with an external
agent that could also modify the interferometric measure, we
cannot conclusivelydetermine this possibility. Further experi-
ments could be needed to confirm this hypothesis, in particular
by following the transformation of a living cell during a whole
division cycle.

4.3 Cell Models for Hematopoietic Stem Cells

Primary CD34+ cells are much more difficult to maintain alive
than laboratory cell lines. We used the TF1 cell line as a model
of immature CD34+ cells, because it displays clonogenic ability
similar to human bone marrow CD34+ cells and is able to differ-
entiate into myeloid lineages.61 As compared with a wild-type or
GFP-transduced TF1 cells, BCR-ABL-transduced (CML onco-
gene) TF1 cells (TF1-BCR-ABL) increase their transcriptional
levels of BCR-ABL and ABL.34 These cells could bring infor-
mation on the impact of BCR-ABL oncogene transduction on

immature cells. Figure 8 shows the results of the WTMM analy-
sis of the OPD of a nontransformed (control) TF1-GFP cell.
Immediately, we notice that the size of this cell (RC ¼
8.22� 0.2 μm) is definitely larger than that of the CD34+ pri-
mary cells. This cell looks rather homogeneous in its composi-
tion because we do not detect so many WTMM chains. The
parametrization of the OPD section [Fig. 8(c)] and the compu-
tation of the OPV ¼ 76 μm lead to a mean RI, nC ¼
1.363� 0.004, which is not very far from the one estimated
for the first domed CD34+ cell (Fig. 6). It seems that even if
this cell has significantly increased its size compared with pri-
mary cells, its optical properties are not very different. In the
sampling of these control and transformed cells, we have
observed very drastic changes, as illustrated in Fig. 9, for the
TF1-GFP-BCR-ABL cell line whose morphology is dramati-
cally different from the TF1-GFP cell shown in Fig. 8. This
type of transformation occurs in less than 10% of the cells trans-
duced by the BCR-ABL oncogene, but since it is accompanied
by a drastic reorganization of the cytoskeleton, we think it is
important to show how the QPM-WTMM method can interpret
and quantify this transformation. BCR-ABL has previously
been demonstrated to bind actin filaments (F-actin),62 one of
the major force transducers in cellular adhesion and motility,63

and to induce its redistribution into punctate, juxtanuclear aggre-
gates,64 implying a reorganization of the whole cytoskeleton. In
Fig. 9, we immediately notice that the cell radius has increased
by a factor ∼3∕2. The number of chains detected by the WTMM
method has also increased by a factor ∼5 (we count only the
chains with a length larger than 100 nm, as smaller chain detec-
tion may be spoiled by background noise). The mean RI of this
TF1-GFP-BCR-ABL cell, computed from the OPV∕VS ratio
[Eq. (20)], is not distinguishable from the mean RI of the
previous TF1-GFP cell. When comparing Figs. 8(b) and 8(c)
and 9(b) and 9(c), we realize that the difference between the
2-D OPD derivatives of control and cancer cells is higher in the
inner cell structures (MΨ½Φ� ¼ 0.011� 0.009 for TF1-GFP

Fig. 7 WTMMmethod analysis of the OPD of a living flattened shape CD34+ cell: (a) OPD phase image,
color coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 230 nm); (b) MΨ½Φ�ðb; aÞ for a ¼ 15, color
coded in the interval [0, 0.092]; (c) horizontal sections through the barycenter of the cell of the OPD
Φ (green line) and ofMΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous
sphere with radius 5.53 μm and index n ¼ 1.35; (d) WTMM chains of the CD34+ cell shown in (a), color
coded according to the value ofMΨ½Φ�; (e) plot of the argumentAΨ½Φ�WTMM of theWTMM chains versus θ
[same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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cell and 0.035� 0.02 for TF1-GFP-BCR-ABL cell) than along
the outer contour (MΨ½Φ� ¼ 0.061� 0.047 for TF1-GFP cell
and 0.07� 0.0085 for TF1-GFP-BCR-ABL cell). This internal
reorganization of the TF1-GFP-BCR-ABL is also visible on
the higher dispersion of the WT arguments [Figs. 8(e) and 8(f)
and 9(e) and 9(f)]. If this preliminary discussion on these two
cells does not allow us to make general conclusions on the trans-
formation of TF1 cells upon BCR-ABL oncogen transduction, it

simply illustrates the fact that the internal structure of these cells
may appear very different through QPM analysis.

We repeated this analysis on two large sets of TF1-GFP (294)
and TF1-GFP-BCR-ABL (216) cells, and we computed the stat-
istical distributions of the mean radius of the outer chain, the
OPV, the mean RI drop [computed from Eq. (20)], the angle
difference Δθ, the number of chains per cells, and the chain
length (Fig. 10). The cell radius distribution is clearly shifted

Fig. 8 WTMMmethod analysis of the OPD of a living hematopoietic model cell TF1-GFP: (a) OPD phase
image, color coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 507 nm); (b) Mψ ½Φ�ðb; aÞ for a ¼ 15,
color coded in the interval [0, 0.2]; (c) horizontal sections through the barycenter of the cell of the OPD Φ
(green line) and of MΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous
sphere with radius 8.22 μm and index n ¼ 1.363; (d) WTMM chains of the TF1-GFP cell shown in (a),
color coded according to the value of MΨ½Φ�; (e) plot of the argument AΨ½Φ�WTMM of the WTMM chains
versus θ [same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.

Fig. 9 WTMM method analysis of the OPD of a living TF1-BCR-ABL cell: (a) OPD phase image, color
coded from dark blue (Φ ¼ 0 nm) to brown red (Φ ¼ 1050 nm); (b)MΨ½Φ�ðb; aÞ for a ¼ 15, color coded in
the interval [0, 0.2]; (c) horizontal sections through the barycenter of the cell of the OPDΦ (green line) and
ofMΨ½Φ� (red line). The black line corresponds to the OPD profile for a homogeneous sphere with radius
13.77 μm and index n ¼ 1.36; (d) WTMM chains of the TF1-GFP-BCR-ABL cell shown in (a), color
coded according to the value ofMΨ½Φ�; (e) plot of the argumentAΨ½Φ�WTMM of the WTMM chains versus
θ [same color coding as in (d)]; and (f) plot of Δθ ¼ AΨ½Φ�WTMM − θ versus θ.
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and spread to larger values with RC ¼ 7.2� 1.2 μm for the
TF1-GFP cells and RC ¼ 8.2� 2.1 μm for the TF1-GFP-
BCR-ABL cells. The OPV follows the same trend with OPV ¼
56� 3 μm3 for the TF1-GFP cells and OPV ¼ 89� 5 μm3 for
the TF1-GFP-BCR-ABL cells (we use the error of the mean for
these quantities). Again, we note that the OPV values are much
more dispersed for the transformed cells. The oncogene trans-
duction seems to increase the variability of the cell structural
properties. One more surprising result is that the mean RI
drop (inner to outer media) of these cells is slightly decreasing
from 0.0351� 0.0075 to 0.0331� 0.019, suggesting that the
apparent swelling of the TF1-GFP-BCR-ABL cells is not
followed by an adapted increase of the intracellular concentra-
tion of proteins to keep the mean RI invariant. The distribution
of angle differences Δθ follows a power law distribution
PðΔθÞ ∝ jΔθj−α, with α ¼ 1. The fact that the shape of this dis-
tribution does not change when switching from control to onco-
gene-transduced TF1 cell means that the statistics of angular
orientation of the maxima chains are not immediately impacted
by the cell transformation. In contrast, the number of chains per
cell is affected by oncogene transduction. The median value of
the two distributions in Fig. 10(e) increases from 21 to 30 chains
per cell (considering only the chains of length larger than
100 nm). Again, we observe that the distribution of these chain
numbers for TF1-GFP-BCR-ABL cells is more spread out than
for control TF1-GFP cells. The distribution of length of these
chains (above 100 nm) follows a smoothly decreasing (logarith-
mic decrease) function for chains smaller than 5 μm, which
drops rapidly to zero for larger chains. The peak popping up

around 45 μm corresponds to the outer chain length, and the
slight flattening and shifting to higher values of this peak for
transduced TF1-GFP-BCR-ABL cells mean that the circumfer-
ence of these cells increases (as their radius) and is more variable
than for nontransformed cells. This observation corroborates our
previous remarks on the cell radius distribution.

5 Conclusions
The interpretation of quantitative phase images of living cells
and their inversion for recovering index profiles is a very
tough task, since a living cell is rarely a homogeneous media,
and even worse its internal bodies (cytoskeletal networks of fil-
aments, endoplasmic reticulum, golgi, mitochondrial network,
and intranuclear structures) are not invariant during the cell
cycle. It is, therefore, very difficult to predict a well-established
distribution of the RIs of a living cell. For instance, the inte-
grated RI values over the cell thickness extracted from the
phase images are not systematically organized along closed
domains, strongly challenging traditional interpretation of phase
images by phase isocontours. When the phase profiles are not
monotonous nor smooth functions, the derivatives of the phase
may display local maxima that reflect a local change of RI or the
topography of the cells. We show here that the detection of these
local maxima may help us deciphering the internal complexity
of living cells. The introduction of the WTMMmethod to detect
the maxima of the derivative of the phase allows a robust and
automatized reconstruction of their outer and inner boundary
chains. From these chains, morphological and global RI char-
acterizations of living blood cells can be performed. The
reported comparison of the results obtained for erythrocytes, pri-
mary immature hematopoietic (CD34+), and model (TF1) cells
provides a good survey of the efficiency of this method to dis-
tinguish healthy from cancer cells. In particular, this study sug-
gests that the RI and its intracell roughening may serve as a
quantitative marker for cancer cell detection.
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