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Abstract. The detection of thrombin based on aptamer binding is studied using two different optical fiber-based
configurations: long period gratings coated with a thin layer of titanium dioxide and surface plasmon resonance
devices in optical fibers coated with a multilayer of gold and titanium dioxide. These structures are functionalized
and the performance to detect thrombin in the range 10 to 100 nM is compared in transmission mode. The
sensitivity to the surrounding refractive index (RI) of the plasmonic device is higher than 3100 nmRIU−1 in
the RI range 1.335 to 1.355, a factor of 20 greater than the sensitivity of the coated grating. The detection of
10 nM of thrombin was accomplished with a wavelength shift of 3.5 nm and a resolution of 0.54 nM.© 2016Society of
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1 Introduction
Low cost analysis systems capable of providing measurements
of analyte in a short-time period or even in real time at low con-
centration are paramount in many fields, such as medicine,
drugs detection, or food safety. Fiber optic devices applied to
biosensing are an appealing solution that can fulfill these
requirements. It is important to recognize the advantages of
these biosensors including their compatibility to a wide range
of surface modifications, chemical-inertness, their compactness
and cost effectiveness, and their potential for remote sensing.1

Thrombin is a key protein playing an important role in the
blood coagulation cascade and in homeostasis.2,3 The concen-
tration of thrombin in blood is quite variable and several clotting
factors are affected by thrombin concentrations.4 The use of
aptamer-based assays for detection and quantification of throm-
bin has several advantages due to their high specificity and affin-
ity to its targets, considering their ability to fold into numerous
tertiary conformations.5,6 Moreover, aptamers can be generated
and synthesized in a large quantity in vitro in a very reproducible
way.7,8 They are thermally and chemically very stable, increas-
ing their use in time without losing its ability to bind specifically
to their target.9,10

The detection of thrombin could be achieved through the
manipulation of a specific thrombin-binding aptamer (TBA)
that inhibits the activity of thrombin.11 This capability of regu-
lating thrombin activity using synthetic compounds is a major
mark in prevention of thrombosis.

The immobilization of the DNA on a waveguide surface
leads to changes in the spectral response, which can be meas-
urable with specific optical fiber components, such as long

period fiber grating (LPFG) or surface plasmon resonance
(SPR) structures. Typical LPFG and SPR fiber-based sensors
show great potential to be used as biosensing devices coupled
with the well-known advantages of optical fiber sensors.12–14

LPFG relies on coupling light from the core mode of a sin-
gle-mode fiber (SMF) into cladding modes through the intro-
duction of a periodic modulation in the refractive index (RI)
of the fiber core.15 The period of the RI modulation is such
that a phase matching condition between the core mode and
a forward propagating cladding mode of an optical fiber occurs
at a given wavelength:16

EQ-TARGET;temp:intralink-;e001;326;312λ ¼ ½neffðλÞ − nicladðλÞ�Λ; (1)

where neffðλÞ is the effective RI of the core mode at wavelength
λ, nicladðλÞ is the effective RI of the i’th cladding mode, and Λ is
the period of the LPFG. Several attenuation bands are formed in
the transmission spectrum of the fiber.17

An evanescent field reaches outside the cladding perimeter,
thus making LPFGs sensitive to the optical properties of mate-
rials surrounding the fiber. This characteristic has led to studies
of LPFGs coated with a number of materials which are chosen
to change their optical properties in response to an external
stimulation.18

Optical fiber sensors based on SPR, on the other hand, have
been studied using different configurations and applied to differ-
ent geometries.19 SPR can be defined as a charge-density oscil-
lation that, in certain conditions, can be generated at the
interface of two media, a metal and a dielectric, with dielectric
constants of opposite signs. The charge density oscillation is
associated with an electromagnetic wave with the evanescent
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field at the interface decaying exponentially into both media.20

The result is an attenuation band in the transmission spectra
whose wavelength position is highly dependent on the external
RI.

In this work, two different types of refractometric platforms
using optical fibers devices, LPFGs and SPRs, were validated to
be used as biosensing devices, for the detection of thrombin
using a 15-mer single-stranded DNA aptamer-based probe as
a model system for protein detection.

2 Materials and Methods

2.1 Reagents and Solutions

The thrombin oligonucleotide sequence (5’-amine-
GGTTGGTGTGGTTGG-3’) with a synthesis scale of 0.2 μM,
purification HPLC, and 5’ amine modification was purchased
from Sigma-Aldrich (Spain). Human-α-thrombin was obtained
from Haematologic Technologies in a concentration of
1 mgmL−1 (50 mM sodium phosphate, 150 mM sodium chlo-
ride, pH 6.5, 3757 Umg−1). The solutions of thrombin used in
each assay were prepared by dilution in 10 mM of phosphate-
buffered saline from Sigma-Aldrich (Spain) in Eppendorf’s
blocked with 1% bovine serum albumin, from Merck, aliquoted
and stored at −80°C. Salts for buffer solutions were prepared in
ultra-pure water, <15 MΩ cm at 25°C. Hydrochloric acid (HCl),
isopropanol (IPA), sodium hypochlorite, ethanol, and magne-
sium chloride were purchased from Panreac (Spain), tris
(hydroxymethyl)aminomethane (Tris), 0.1 % (w/v) poly-L-
lysine (PLL), potassium chloride (KCl), sodium chloride
(NaCl), SSPE buffer 20× concentrate [1× ¼ 0.150 M sodium
chloride, 0.010 M sodium phosphate, 0.001 M ethylenediami-
netetraacetic acid (EDTA)] and Tris-EDTA (TE) were obtained
from Sigma (Germany). The buffers used in this work were
aptamer resuspension buffer: TE (10 mM Tris pH 7.5 to 8.0;
1 mM EDTA); aptamer immobilization buffer: SSPE (1:10),
(diluted from 20× SSPE); affinity buffer (50 mM Tris-HCl
pH 7.4, 250 mM NaCl, 5 mM MgCl2) and measurement buffer
(10 mM Tris-HCl pH 7.4, 100 mM KCl). All the reagents were
of analytical grade.

2.2 Optical Fiber Sensors Fabrication

Both sensing structures were produced from the regular SMF28
from Corning, Inc., following a specific protocol. The LPFG
sensors were produced by the electric-arc technique, as
described by Rego et al.,21 which consists of applying point-
by-point short time discharges to the uncoated fiber. The period
of the gratings was 396 μm, a value chosen to produce a reso-
nance wavelength at 1550 nm matching the antisymmetric sixth
order cladding mode (LP16) according to Ivanov and Rego.22

The grating attenuation band value was reached with a sensor
length of 45� 5 mm.

The sensitivity to the external medium of the LPFG was
enhanced by coating the surface with a 30-nm thin layer of tita-
nium dioxide (TiO2), the details of the manufacturing process
were presented recently.23 This procedure causes a reduction
in the amplitude of the attenuation band. For temperature com-
pensation, the LPFG is coupled to a fiber Bragg grating (FBG)
written in hydrogen loaded SMF28 fiber using the phase mask
technique with a reflection wavelength peak at 1537.5 nm at
room temperature.24

The SPR sensing device was produced using the procedure
previously described.25 Briefly, the plastic protective jacket was
removed and a 10 mm long section of the fiber was chemically
etched by immersion in an aqueous solution with 10 mL of 48%
HF during 48 min at 22 C and 60% of humidity until the etched
region became ∼16 μm in diameter. The sensing region is
located at the thinner section, where the evanescent field is able
to excite the plasmonic wave. First, the etched region was coated
with 2 nm of pure chromium (Cr) to improve the adhesion of
gold (Au). Then a 16-nm thick film of Au was deposited around
the fiber, followed by a 100-nm thick dielectric layer of TiO2.
The thickness of both metal and dielectric layers was calculated
in a previous publication25 to obtain a resonance in the C-band
by using the transfer matrix formalism approximation for a
SLAB multilayer system.

The metal/dielectric coatings were produced around the
cylindrical fiber shape by thermal evaporation of pure titanium
(Ti) in a controlled oxygen atmosphere using an electron beam
evaporator (Auto 306, Edwards Ltd., United Kingdom) fitted
with a rotary system, which improves the homogeneity of the
coating.

2.3 Biosensing Principle

Both sensing surfaces were functionalized with PLL, followed
by the immobilization of the DNA probe—TBA, for the specific
recognition of thrombin. It is well-studied, 15-mer single-
stranded DNA that shows good affinity and specificity against
thrombin as has been described by Bock et al.26 and does not
interact with other plasma proteins or thrombin analogues, such
as gamma-thrombin.27

The detailed biosensor principle is illustrated in Fig. 1. First,
in Fig. 1(a), the sensing surface was cleaned with IPA and then
rinsed with ultra-pure water and dried with nitrogen (N2). Then
in Fig. 1(b), the surface was functionalized with PLL (60 min at
room temperature). The polycationic nature of the PLL leads to
its electrostatic attraction onto the fiber’s negatively charged sur-
face, in an aqueous environment at neutral pH (7.4). After that in
Fig. 1(c), the 5’-amine modified TBA (500 nM) was incubated

Fig. 1 Detailed scheme of the biosensor binding principle: (a) clean surface, (b) surface functionalized
with PLL, (c) incubated with TBA, and (d) in the presence of thrombin.
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for 60 min at room temperature for its covalent attachment to the
PLL backbone. In the absence of thrombin, the TBA remains at
its secondary conformation. In the presence of thrombin, the
TBA folds around the protein and forms a TBA/thrombin com-
plex, acquiring the G-quarter (tertiary) conformation [Fig. 1(d)].
The formation of this complex causes an increase in the effective
RI, which changes the optical properties of the guided light.

The sensing devices were incubated with several concentra-
tions of thrombin in the affinity buffer for 1 h. The sensor
response was measured in the concentration range from 10 to
100 nM. Between all concentrations steps, the sensing device
surfaces were washed with Tris-HCl buffer and the transmission
spectra were recorded with the optical spectrum analyzer (OSA)
in the measurement buffer. After a complete assay, the sensing
probe was washed with 5% hypochlorite solution for 30 min, to
regenerate the fiber sensor surface for reuse.

2.4 Fiber-Optic Sensing Setup Assembly

The optical characterization entails the setup shown in Fig. 2
with an OSA or equivalent. The characterization setup for the
LPFG [Fig. 2(a)] includes a FS2200 Braggmeter (FiberSensing,
SA, Portugal), a fluidic system containing a reaction chamber
with capacity of 750 μL, and a laptop (not shown) with
LabVIEW software that receives and processes the readout
information. The LPFG and FBG sensing elements were char-
acterized using the Braggmeter (working in the 1500 to 1600 nm
range with 2.5 pm of resolution) and modified to measure sig-
nals both in reflection and in transmission modes.

The setup in Fig. 2(b) for the SPR sensing characterization
includes a super luminescent diode source (SLD) model
S5FC1550S-A2 (Benchtop SLD—Thorlabs, Germany), a flu-
idic system where the fiber is fixed, and an OSA (ANDO,
model AQ 6315B).

Although the Braggmeter is, by design, capable of simulta-
neously monitoring two sets of sensors, the SPR sensor at
low RI values operates outside its spectral window (1500 to
1600 nm). Therefore, the interrogation of the sensors was done
using the OSA and SLD for SPR and the FS2200 SA
Braggmeter (for the LPFG). The different setups were used
together in order to enable the simultaneous measurements
and comparison of the sensor devices.

3 Results and Discussion

3.1 Refractive Index Characterization

Both sensing devices were characterized in terms of the sur-
rounding refractive index (SRI) changes. Solutions with differ-
ent RI values were prepared by adding ethylene glycol to ultra-
pure water. Thus, solutions with RI from 1.335 to 1.430 can be
obtained varying concentrations of the mixture.28 In order to
accomplish homogeneous solutions, a magnetic stirrer was
used and the measurements were accomplished within 5 min
after each mixing.

In parallel to the optical characterization of the fiber sensing
devices, the RI of the sample solutions was measured at room
temperature (26� 1°C) using an Abbe refractometer (A. Kruss,
Optronic, Germany) with an RI resolution of 2.5 × 10−4.

Fig. 2 Scheme of the sensing configurations: (a) long period grating coated with 30 nm of TiO2 and
(b) surface plasmon resonance device in etched single-mode fiber coated with Au and TiO2.
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Solutions with RI in the range from 1.335 to 1.373 were
attained.

After each measurement, the sensing device was flushed with
20 ml of IPA and dried with filtered air to avoid contamination to
the next sample. Then the spectrum of each sensor was moni-
tored to ensure that the initial spectral conditions were verified.

The characterization of the sensors enables the calculation of
the sensor sensitivity through the changes of the spectrum due to
changes of the effective SRI.

The wavelength dependence with the external RI of the
LPFG and the SPR is presented in Figs. 3 and 4, respectively.
The resonance peak of these kind of devices is, in most cases,
asymmetric, however, the lower part of the attenuation bands
can be fitted by a symmetric curve with reasonable accuracy.
To perform this analysis, the minimum optical power of the
band was evaluated and then considering only the points 30%
above this minimum, a Gaussian function was fitted and all the
parameters were extracted, such as the wavelength position and
the minimum optical power.

In both sensing devices, the dependence of the wavelength
with the RI is nonlinear, nevertheless, a rough linear fitting
can be made in the RI range from 1.335 to 1.355 where the

corresponding changes induced by the thrombin detection are
expected.

Figure 3(a) shows the spectra of the LPFG when placed in
different RI solutions. By monitoring the position of the reso-
nant peak as a function of the SRI, it is possible to estimate the
spectral sensitivity of the sensor, obtaining the traces presented
in Fig. 3(b). Even though the LPFGs are sensitive to tempera-
ture, when coupled to the FBG, which is insensitive to the SRI,
these variations can be compensated.29 The inset of Fig. 3(b)
presents the wavelength shift of the FBG transmission peak
showing the thermal variation of each measuring point, which
is used to calibrate the LPFG data points leading to a sensitivity
to the SRI of 153.5 nmRIU−1, which is higher than a bare LPFG
in the same RI range, as reported in a previous publication.30

In Fig. 4(a), the spectra obtained with the SPR at different
SRI values are presented. Although the shape of the attenuation
band is wider, the wavelength shift attained for the same RI
samples is more than 20 times higher compared to the LPFG.
The data points corresponding to the SPR sensor presented
in Fig. 4(b) follow an exponential behavior. However, in the
expected working RI range, from 1.335 to 1.355, a linear fit
leads to a calculated sensitivity higher than 3000 nmRIU−1.

Fig. 3 (a) Spectra of the LPFG for different SRI values, the FBG located at higher wavelength and
(b) LPFG wavelength shift to SRI between 1.335 and 1.375 with thermal compensation and with a linear
behavior up to 1.355. Inset is the FBG spectral response due to thermal variations.

Fig. 4 (a) Spectra of the SPR at different SRI liquid samples and (b) SPRwavelength shift to different SRI
samples with a linear fit in the RI range from 1.335 to 1.355.
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The low temperature variations are not an issue when the
SPR device is considered. The effect of temperature using an
SPR sensor was discussed previously.25 Despite the material
properties of the SPR layers being affected by temperature with
thermal expansion, these changes are not reflected in the optical
properties when such low variations are considered. In addition,
it is known31 that the RI of liquids change with temperature by
a factor of ∼1.73 × 10−4°C−1, which can be neglected for this
working range.

3.2 Thrombin-Binding Aptamer-Based Optical Fiber
Sensing Systems Operation

The sensor performance was tested against varying concentra-
tions of thrombin (10 to 100 nM) in the measuring buffer sol-
ution, using both sensing systems, LPFG and SPR-based.

Figure 5(a) displays the spectra of the LPFG coated with
30 nm of TiO2 in series with an FBG across the functionaliza-
tion procedure with PLL, the immobilization of the DNA probe,
the thrombin detection with a concentration of 100 nM, and
the regeneration using hypochlorite.

The LPFG response (wavelength shift) to the surface func-
tionalization and thrombin detection measured in buffer solution
are shown in Fig. 5(b). Well-defined steps, corresponding to the
different layers attached to the LPFG surface, were attained after
the thermal effect correction calculated with the FBG.

The transmitted spectra of the coupled FBG in Fig. 5(c) show
small variations of the temperature detected along the function-
alization and detection procedure. The correspondent wave-
length shift is quantified in Fig. 5(d) and is used for the LPFG
calibration considering the intrinsic temperature sensitivities of
each structure.

The PLL coating causes a negative wavelength shift of about
128 pm, which reflects an increase of the effective RI (as
reported by Westwood et al. in 201332). The immobilization of
the DNA probe, TBA, causes a resonance peak shift of 165 pm.
The binding of TBA-thrombin causes a wavelength shift of
about 100 pm. The resolution can be calculated by using the
following mathematical equation:

EQ-TARGET;temp:intralink-;e002;326;609R ¼ δC
δλ

σ; (2)

where C is the thrombin concentration, δλ is the wavelength
shift, and σ is the higher standard deviation of the two stages
in a certain step. The resolution for this event is about 10.4 nM
for a concentration of 100 nM.

It is visible in the regeneration step with hypochlorite that the
DNA probe was removed from the sensor leaving the surface
completely regenerated and ready for a new functionalization
procedure.

The SPR spectra obtained at each step of the thrombin detec-
tion are shown in Fig. 6. As previously mentioned, the SPR

Fig. 5 (a) LFBG spectra after each procedure step (bare, PLL, TBA, thrombin binding, and regeneration),
(b) wavelength shift of the LPFG after temperature correction, (c) transmission FBG spectra, and (d) FBG
wavelength shift behavior. Measurements were done in Tris-HCl buffer solution at room temperature.
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spectrum shape is wider with lower attenuation due to the polari-
zation effect (which is not controlled in this experiment),
although with a sensitivity 20 times higher.

The spectral features of the SPR in transmission mode are
illustrated in Fig. 7 in terms of the wavelength shift [Fig. 7(a)]
and the optical power shift [Fig. 7(b)] of the attenuation band
minimum considering the functionalization steps, the thrombin
detection, and the regeneration of the sensor. Wavelength shifts
of 10.3 and 8.2 nm for the PLL coating and the TBA immobi-
lization, respectively, were achieved. The step corresponding to
the thrombin detection shows a variation of 4.94 nm, which is
a considerable improvement when compared to ∼100 pm from
the LPFG results.

The thrombin detection resolutions using the SPR sensor for
the wavelength and intensity modulations were calculated as
1.08 and 0.13 nM, respectively.

3.3 Sensor Performance to Thrombin Detection

The analytical performance of TBA-based optical fiber sensing
systems was investigated by using target thrombin with different
concentrations (10, 50, and 100 nM).

The results of the wavelength shift when applying different
concentrations of thrombin normalized to the TBA are shown in
Fig. 8. The SPR results are represented with empty symbols
while the LFBG are represented by the filled ones.

In the SPR configuration, a resonance shift of ∼3.5 nm is
observed for 10 nM of thrombin. From this data, and consider-
ing the system signal-to-noise-ratio, a resolution of 0.54 nM
can be calculated. Increasing the concentration to 50 nM leads
to a new shift of the resonance of about 1.5 nm, corresponding to
a total accumulated shift of 5 nm after the TBA immobiliza-
tion. A new increase of the concentration to 100 nM results
in practically no observable shift. The sensor displays a similar

Fig. 6 Average SPR spectra of five measurements at each procedure
step with (bare, PLL, TBA, thrombin binding, and regeneration).
Measurements were done in Tris-HCl buffer solution at room
temperature.

Fig. 7 Results of the (a) SPR wavelength and (b) optical power shifts after each procedure step (PLL,
TBA, thrombin, and hypochlorite). Measurements were done in Tris-HCl buffer solution at room temper-
ature. The optical power shift follows the same behavior with well-defined steps allowing the sensor to be
used in intensity modulation mode. In both modes, the functionalization layers are completely removed
from the surface during the regeneration step enabling new measurement cycles.

Fig. 8 Wavelength shift of the LPFG (filled symbols) and the SPR
(empty symbols) in Tris buffer measurement solution after the TBA
immobilization and after thrombin incubation at 10, 50, and 100 nM.
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resonance peak position, which corresponds to the same wave-
length shift obtained previously in different trials using only one
step between TBA and 100 nM of thrombin. The absence of a
wavelength shift from 50 to 100 nM suggests that the sensor
reaches a saturation limit. Changes in the PLL/TBA concentra-
tions in the functionalization procedure should give rise to
improvement of the thrombin detection efficiency.

In the case of the LPFG, a smaller negative shift is observed.
As previously mentioned, the wavelength shift attained for the
same RI samples is 20 times higher than that for the SPR com-
pared to the LPFG, as confirmed by the data. The lower sensi-
tivity to the external RI shown by the LPFG was found to be a
limitation to a proper quantification of the thrombin with accu-
racy. Nevertheless, it validated the working principle also with
LPFG. Furthermore, several strategies can be explored to greatly
enhance the sensitivity of LPFG-based devices33 that could en-
able quantification.

Although the comparison between those two system devices
can be achieved by the introduction of a figure of merit (FOM)
by using the following equation:34

EQ-TARGET;temp:intralink-;e003;63;340FOM ¼ S
FWHM

; (3)

which is defined by the ratio between the sensitivity to the exter-
nal RI (S) and the full width at half maximum. Considering the
sensitivities to the external medium previously calculated as
3143 nm∕RIU and 204 nm∕RIU for the SPR and LPFG sen-
sors, respectively, the calculated FOM results in 26.2 and 18.3,
which is an indicator of a better performance of the SPR con-
figuration even with a wider spectral shape.

These results are comparable to other researchers’ work, as
can be observed in Table 1.

This comparison is made through the same recognition
method using a DNA aptamer and it shows indicators of good
performance considering the sensitivity to the thrombin detec-
tion and the total regeneration of the sensor surface.

3.4 Cross-Reactivity to Other Molecules

The TBAwas already presented as an aptamer that shows good
affinity and specificity against thrombin26 and does not interact
with other plasma proteins or thrombin analogues such as
gamma-thrombin;27 nevertheless, its cross-reactivity with other
molecules was experimentally tested.

To assess the nonspecific binding of other molecules that
could be present in real samples of the different sensor configu-
rations, the LPFG and SPR sensing devices were incubated with
100 nM of human serum albumin (HSA) for 60 min in the same
affinity buffer. Because HSA is the most abundant protein in
human plasma and is a potential interference present in real
blood or serum samples, it is a suitable protein to be tested in
the present work.

In the case of the LPFG, the wavelength shift obtained has an
insignificant value (∼0.022 nm), which was found to be below
the measurement error. In the SPR configuration, a higher shift
of about 0.9 nm was observed (data not shown), for 100 nM of
HAS, however, this is a small fraction of the shift obtained when
incubating with only 10 nM thrombin.

These results show good chemical and biological specificity
of TBA binding to thrombin even in the presence of potential
interferences.

4 Conclusions
The detection of thrombin was compared using two different
optical fiber sensing configurations, LPFG- and SPR-based.

LPFG with titanium dioxide coating improves the sensitivity
to external refractive indices and has proven the feasibility of
thrombin detection. Despite the temperature dependence, the
robustness and the narrow bands lead to possible applications
with multiplexing capabilities. The coupling to FBGs allows
the postprocessing corrections to thermal variations. The lower
sensitivity to the external RI is a barrier to quantify the thrombin
concentrations with accuracy. Nevertheless, it can be used to act
for presence/absence detection.

The higher RI sensitivity of the SPR with a higher FOM
when compared to the LPFG response and the insensitivity
to thermal variations have shown detection levels of thrombin
down to 10 nM. The regeneration of the surface was attained
in both configurations allowing a new functionalization pro-
cedure and, therefore, the reuse of the sensing system.

Both refractometric platforms allow to use the external RI
variations to quantify thrombin concentration in a buffer solu-
tion, therefore, the same concept could, in principle, be applied
to estimate the RI/thickness of the PLL layer or even to quantify
the amount of the TBA immobilization.
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