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Abstract. Subdiffuse spatial frequency domain imaging (sd-SFDI) data of 42 freshly excised, bread-loafed
tumor resections from breast-conserving surgery (BCS) were evaluated using texture analysis and a machine
learning framework for tissue classification. Resections contained 56 regions of interest (RoIs) determined
by expert histopathological analysis. RoIs were coregistered with sd-SFDI data and sampled into ∼4 × 4 mm2

subimage samples of confirmed and homogeneous histological categories. Sd-SFDI reflectance textures were
analyzed using gray-level co-occurrence matrix pixel statistics, image primitives, and power spectral density
curve parameters. Texture metrics exhibited statistical significance (p-value < 0.05) between three benign and
three malignant tissue subtypes. Pairs of benign and malignant subtypes underwent texture-based, binary
classification with correlation-based feature selection. Classification performance was evaluated using fivefold
cross-validation and feature grid searching. Classification using subdiffuse, monochromatic reflectance (illumi-
nation spatial frequency of f x ¼ 1.37 mm−1, optical wavelength of λ ¼ 490 nm) achieved accuracies ranging
from 0.55 (95% CI: 0.41 to 0.69) to 0.95 (95% CI: 0.90 to 1.00) depending on the benign–malignant diagnosis
pair. Texture analysis of sd-SFDI data maintains the spatial context within images, is free of light transport model
assumptions, and may provide an alternative, computationally efficient approach for wide field-of-view (cm2)
BCS tumor margin assessment relative to pixel-based optical scatter or color properties alone. © The Authors.
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1 Introduction
Breast-conserving surgery (BCS) in combination with radiation
therapy is the most common treatment for stage I and II breast
cancer.1,2 For BCS to be effective, excised tissue margins must
be clear of malignancy (i.e., negative margins). However, 15%
to 35% of BCS patients require a second surgery due to incom-
plete initial excision (i.e., one or more positive margins) as
determined by histopathological analysis.3–8 Identification of
cancer at the margin is a spatial detection problem, filtered
visually by pathology technicians and pathologists performing
labor-intensive searches of tissue sections. Several techniques
have been proposed for improved BCS margin assessment,
but significant limitations associated with each approach have
prevented their widespread adoption.7 Common techniques
include electrical impedance;9,10 diffuse reflectance11 and
Raman spectroscopic point-sampling;12 touch-prep cytology;13

and frozen section pathology.14 Importantly, point-sampling
methods lack a comprehensive and/or practical approach to wide
field-of-view (FOV) detection and thus are inherently time-
consuming. Touch-prep cytology and frozen section pathology
are resource-intensive to process even a subsection of a BCS

specimen and suffer slow turnaround times.13 Most techniques
lack the speed and wide FOV required to intraoperatively inter-
rogate an entire BCS lump.

Technology assessment studies often adopt broad tissue cat-
egories, such as normal versus malignant.7 This categorization
lumps together healthy adipose and fibroglandular tissues with
benign lesions, such as fibrocystic disease (FCD), although
these tissue subtypes contain different cellular and subcellular
structures. Malignant tissue subtypes, including invasive ductal
carcinoma (IDC) of low, intermediate, and high grade and inva-
sive lobular carcinoma (ILC), are all characterized by different
densities of nuclei and mitochondria, and different types and
organizations of cells. Nevertheless, these malignant tissue
subtypes are also commonly lumped together into a single
malignant tissue category. Studies that rely on broad tissue
categorization complicate the tissue classification task and jeop-
ardize clinical potential. The problem of intraoperative breast
tissue classification could be simplified by ensuring sensitivity
to key benign and malignant breast tissue subtypes. In addition,
biopsies are performed prior to BCS procedures, and using
this a priori tissue information could improve tissue margin
diagnostic accuracy by reducing the number of possible malig-
nant tissue subtypes.15

Wide FOV (100 − 102 cm2) structured light imaging, also
known as spatial frequency-domain imaging (SFDI), involves
illuminating tissue samples with one-dimensional (1-D) sinus-
oidal patterns at different spatial frequencies (fx) and optical
wavelengths (λ). Using a diffuse or subdiffuse light transport
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model, SFDI data can determine the optical absorption and scat-
tering properties of biological tissue.16,17 A strength of SFDI is
that it can be readily implemented with standard imaging and
display hardware. Perhaps most promisingly in the context of
surface tissue characterization (e.g., BCS margin assessment),
the illumination pattern fx and λ can be honed to decrease sen-
sitivity to absorption, increase sensitivity to scatter, and enhance
contrast to surface tissue ultrastructures. This is accomplished
by using high spatial frequencies18 and relatively short optical
wavelengths.19 The combination reduces photon density wave
penetration depth, avoids volumetric averaging over tortuous
photon pathlengths, and thereby natively enhances spatial res-
olution. At sufficiently high spatial frequencies, SFDI illumina-
tion penetrates to depths less than the length scale of diffuse
photon propagation. Photons are intrinsically confined to sur-
face tissue and are most sensitive to large, single backscattering
events with the angle and intensity of reflectance dependent on
cellular ultrastructures.20 In this regime, the modality is termed
high spatial frequency (HSF) structured light imaging15,21 or
subdiffuse SFDI (sd-SFDI).22

Previous studies have investigated diffuse and subdiffuse
SFDI for BCS specimen margin assessment using optical
properties.22–24 The work presented here represents part II of
a two-part paper and used the largest SFDI dataset of fresh
BCS tissue specimens published to date with the most extensive
categorization of benign and malignant tissue subtypes. The
complete dataset was introduced in part I of this paper,15 which
focused on optical scatter and color property quantification.
Optical scatter and color properties have demonstrated potential
for breast tumor margin assessment. However, both types of
properties are inherently pixel-based, lacking spatial context
between pixels.15 Furthermore, optical property quantification
necessitates significant computation, requiring either nonlinear

least squares fitting of data to an appropriate light transport
model or the generation of an empirical look-up table using a
Monte Carlo model.16,25 The process can be slow,22 and model-
based inversion fitting can introduce additional errors.16

Texture analysis refers to the appearance, structure, and
arrangement of features within an image and thus inherently
relies on the spatial relationship of multiple pixels in an image.
Here, in part II, the SFDI dataset introduced in part I was reproc-
essed using texture analysis and a machine learning framework
for tissue subtype classification. The primary objectives of part
II are twofold. First, the authors introduce an sd-SFDI imaging
and analysis protocol for BCS tissue surface characterization
that uses one spatial frequency (fx ¼ 1.37 mm−1), one optical
wavelength (λ ¼ 490 nm), and reflectance texture instead of
tissue optical and/or color properties. The protocol leverages
subdiffuse scatter as a contrast mechanism. It benefits from a
relatively fast acquisition time and increased computational effi-
ciency, because property quantification does not involve inverse
model fitting. Importantly, the protocol avoids light transport
model assumptions for metric quantitation. Second, the statisti-
cal significance of a limited set of statistical, structural, and
transform-based texture metrics is evaluated by hypothesis test-
ing, and the relative importance of these metrics is evaluated by
a classification model.

2 Materials and Methods
Details regarding the imaging system are given in Sec. 2.1. The
clinical study protocol for this paper is outlined in Sec. 2.2.
Figure 1 shows the processing workflow for part II of this paper:
region of interest (RoI) sampling, texture metric quantitation and
statistical analysis, and classification. These steps are discussed
in detail in Secs. 2.3, 2.4, and 2.5, respectively.

Fig. 1 The processing workflow for this paper: (a) RGB color space, diffuse illumination (f x ¼
0.00 mm−1) “naked eye” reconstruction according to Ref. 21 for comparison; (b) subdiffuse reflectance
(f x ¼ 1.37 mm−1), monochromatic (λ ¼ 490 nm) image of the same specimen; (c) specimen with ILC
lesion RoI (red) and sampled subimages (blue); and (d) subimage texture analysis, statistical analysis,
and classification.
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2.1 Instrumentation

A multimodal imaging system that combines SFDI and micro-
computed tomography imaged all BCS tissue specimens in this
study. The experimental performance of the system was deter-
mined previously.21 The highest spatial resolution demonstrated
by the SFDI subsystem was 3.78 cycles∕mm and involved using
the highest spatial frequency possible (fx ¼ 1.37 mm−1) and
lowest optical wavelength at which data were collected
(λ ¼ 490 nm). This specific spatial frequency was the highest
achievable experimentally, given the SFDI subsystem geometry
and the limitations of the digital micromirror device used.21 Each
specimen was placed between two custom laser-cut, optically
clear acrylic plates and secured using elastic bands. Fixing the
specimen in the holder provided a flat imaging surface. The pro-
jector, stage, and camera created an off-axis projection scheme.
The flat imaging surface and off-axis projection reduced the
occurrence of specular reflections.21 Crossed polarizers were not
used in this case to avoid undesired rejection of subdiffusely
scattered photons, which undergo a phase shift close to 180 deg.
Data acquisition followed the standard SFDI procedure of im-
aging at three phase offsets (i.e., Φ1 ¼ 0 deg, Φ2 ¼ 120 deg,
Φ3 ¼ 240 deg) then combining the three phases using
pixel-by-pixel demodulation for a given fx and λ pair.26

Demodulated reflectance data were normalized and median
filtered using a 3 × 3-pixel kernel prior to further processing.

2.2 Study Protocol

Imaging was performed at the Dartmouth Hitchcock Medical
Center (DHMC) in Lebanon, New Hampshire. The clinical
study was approved by the Institutional Review Board at
Dartmouth College and DHMC for the protection of human
subjects, and all procedures followed the approved protocol.
Procurement of tissue specimens involved patients undergoing
consented and elective breast surgeries at DHMC.

Specimen imaging occurred postoperatively during standard
pathological processing and did not hinder clinical workflow. A
resected tumor was “bread-loafed” or sliced into ∼5-mm sec-
tions along the axis perpendicular to the long axis of the lump.
One slice from the lump was selected by a pathology specialist
and imaged with random anatomical orientation. Image data
were therefore assumed to be free of rotational bias. After stan-
dard-of-care histological processing and staining with hema-
toxylin and eosin, a board-certified breast pathologist (Wells)
determined microscopic RoIs that were manually coregistered
to wide FOV SFDI data. For an imaged slice, SFDI RoIs were
conservatively outlined within the histopathologic RoIs. RoIs
did not necessarily encompass the entirety of each specimen.
Many lesions were relatively small compared to the total surface
area of the specimens. RoI selection was intentionally
conservative to ensure that the regions were completely con-
tained within the lesions.

A summary of all enrolled tissues can be found in part I of
this paper.15 For the texture analysis here, the enrolled tissue
RoIs were sampled to create square subimages of constant size.
The sampling process resulted in a subset of the original dataset
being considered for texture analysis.

2.3 Region of Interest Sampling

Texture analysis was performed on 32 × 32-pixel (i.e.,
∼4 × 4 mm2) subimage samples extracted from each specimen

RoI. The size was chosen such that macroscale tissue features
were captured in each subimage. Square subimage sampling
enabled direct comparisons of localized tissue textures found
in different tissue subtypes. A custom MATLAB script imple-
mented a simple sliding-box algorithm for subimage sampling,
which is demonstrated in Figs. 1(c) and 1(d). Tissue diagnoses
found in fewer than n ¼ 3 specimens and RoIs too small to con-
tain a single sample were excluded. Samples with large specular
reflections were identified and censured via a custom MATLAB
script based on the median absolute deviation of pixel intensities
in each sample. A total of 42 specimens containing 56 RoIs
(37 benign and 19 malignant) met these criteria. The primary
cause for data exclusion was the requirement of a ∼4 × 4 mm2

sample of confirmed and homogeneous tissue. Several lesion
RoIs in the dataset were too small or irregular in shape to contain
a ∼4 × 4 mm2 sample. The 56 eligible RoIs provided a total
of 163 subimages (100 benign and 63 malignant) for texture
analysis. Table 1 summarizes the 163 samples with respect to
tissue subtype, specimen (or RoI) count, and sample count.

Benign tissue subtypes considered for texture analysis were
adipose tissue, connective tissue, and FCD. Fibroadenoma was
not included in the analysis. This type of benign lesion, although
present in sufficient numbers for inclusion (4 RoIs and 24 sam-
ples), was assumed to be of nominal clinical importance,
because it is typically known prior to surgery and rarely warrants
a re-excision procedure.27 Malignant subtypes considered for
texture analysis were intermediate- and high-grade IDC and
ILC (i.e., only invasive cancers). Representative samples from
the six tissue subtypes are shown in Fig. 2. In the figure, the
bordering around each 3 × 3 block of samples is color-coded
by tissue subtype. The solid border denotes diffuse, planar illu-
mination reflectance (fx ¼ 0.00 mm−1, λ ¼ 490 nm) derived
from the SFDI data. The dashed border denotes subdiffuse
reflectance (fx ¼ 1.37 mm−1, λ ¼ 490 nm) derived from the
SFDI data. The same tissue samples are displayed in the diffuse
and subdiffuse reflectance panes. The comparison demonstrates
that subdiffuse reflectance is sensitive to small-scale surface
tissue features that are occult to typical, planar illumination
imaging. Furthermore, the figure shows how sd-SFDI scatter
might function as a useful surface tissue contrast mechanism.
Section 3.1 relates the various subdiffuse reflectance textures
observed in Fig. 2 to underlying tissue subtype compositions.

Table 1 Summary of 32 × 32-pixel (∼4 × 4 mm2) SFDI reflectance
samples with benign diagnoses in bold and malignant diagnoses in
italic.

Tissue subtype Specimen (RoI) count Sample count

Adipose 26 56

Connective 6 20

FCD 5 24

Intermediate-grade IDC 5 14

High-grade IDC 8 29

ILC 6 20

Total 56 163
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2.4 Texture Analysis

Texture analysis of spectroscopic images is known to provide
unique information about scattering ultrastructures in human
breast tissues.27 Here, texture is considered an analysis tool for
sd-SFDI data. Avariety of texture representations were explored
in this paper, all of which can be broadly categorized as
statistical, structural, or transform-based in nature. These three
representations of texture have been used to analyze radiological
images of biological tissues, including mammography.28

Statistical metrics included gray-level co-occurrence matrix
(GLCM) contrast, correlation, and homogeneity.27 Structural
or image primitive metrics included fractal dimension, lacunar-
ity, and Euler number.27,29–31 Transform-based metrics were
derived from Fourier transform power spectral density (PSD)
curve linear fit parameters.32 Details associated with GLCM
pixel statistics, structural image primitives, and Fourier trans-
form PSD curve parameters are given in Secs. 2.4.1, 2.4.2, and
2.4.3, respectively.

Texture analysis generated a total of eleven features associ-
ated with each sample. Table 2 summarizes the number of
metrics associated with each representation of texture. All
metrics were quantified rapidly for each sample (<1 s).
Figure 3 provides an overview of the three representations of
texture investigated here and gives qualitative comparisons
between tissue subtypes undergoing each type of texture
analysis.

The Mann-Whitney U-test is used to test the null hypothesis
that two samples come from the same population. The Mann-
Whitney U-test was chosen to quantify p-values due to small

sample sizes and to avoid the assumption of normally distributed
metrics. U-test p-values quantified the statistical significance of
pixel statistics, image primitives, and PSD curve parameters
between the three benign and three malignant tissue subtypes.

2.4.1 Gray-level co-occurrence matrix pixel statistics

The GLCM representation of texture features assesses the spa-
tial dependence of pixel intensities within an image. Pixel sta-
tistics of contrast, correlation, and homogeneity were calculated
for each sample based on eight-level grayscale intensity images
(8 × 8-element GLCMs). Contrast quantifies the local variation
in an image, correlation measures its gray-tone linear depend-
encies, and homogeneity assesses the prevalence of gray-tone
transitions.33 Each GLCM invoked a one-pixel displacement
distance and vector directionality symmetric about 0 deg, 45 deg,
90 deg, and 135 deg. Reported values were averaged over the

Fig. 2 Representative samples of the normal and benign tissues (left column) and malignant tissues
(right column). Panes are color-coded by tissue subtype. Solid boarders denote planar, diffuse illumi-
nation (f x ¼ 0.00 mm−1, λ ¼ 490 nm) reflectance. Dashed boarders denote subdiffuse illumination
(f x ¼ 1.37 mm−1, λ ¼ 490 nm) reflectance. Scalebar is shown in the bottom-right corner.

Table 2 Summary of texture metrics quantified for each sample.

Texture analysis method Metric count

Pixel statistics 3

Image primitives 3

PSD curve parameterization 5

Total 11
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four angles. Each GLCM was generated using the MATLAB
graycomatrix function, and statistics were quantified via the
MATLAB graycoprops function.34

2.4.2 Image primitives

The arrangement of repeating patterns or features in an image,
referred to as image primitives, were also used to characterize
texture. Samples were converted into binary format using a
Bernsen local thresholding algorithm implemented in
MATLAB.35,36 Bernsen thresholding is based on local contrast
within a moving window (a 13 × 13-pixel window here). Local
contrast thresholding was found to effectively isolate reflectance
structures sometimes lost by global thresholding. Euler number,
fractal dimension, and lacunarity were quantified for each
binary sample. Euler number codifies the difference between the
number of connected components or objects in an image and the
number of holes in those objects. Euler number was computed
using the MATLAB function bweuler.34 The Hausdorff box-
counting fractal dimension, which is a measure of self-similarity
and roughness in an image, was computed using the MATLAB
function hausDim.37,38 Lacunarity is a measure of inhomogene-
ity or transitional and rotational invariance of features in an
image. Lacunarity was computed by the MATLAB function
lacunarity_glbox.39

2.4.3 Power spectral density curve parameters

A PSD curve depicts the relative amplitude of spatial frequen-
cies within an image. The PSD curve of each sample was cal-
culated via a two-dimensional (2-D) discrete Fourier transform

followed by radial averaging of the amplitude of the shifted
image data. Radial averaging decomposed the 2-D image into
a 1-D profile, which was then converted to power and normal-
ized by its maximum value. Normalized PSD curves were
derived using an adapted form of the MATLAB function
raPsd2d.40 Parameterization involved visual identification of
two distinct spatial frequency ranges that consistently exhibited
different slopes in the PSD curves. These two spatial frequency
ranges formed low spatial frequency (LSF) and HSF PSD
contributions. Linear fits were applied to these two spatial fre-
quency ranges, yielding slope and intercept parameters for each
contribution. The spatial frequency at which the two linear fits
intersected provided a fifth parameter.

The LSF and HSF ranges for linear fit parameterization were
set to 0 to 1 mm−1 and 1 to 2 mm−1, respectively. These ranges
were selected after inspection of an ensemble of PSD curves for
all samples, shown in Fig. 4(a). In Fig. 4(b), the five linear fit
parameters derived from each PSD curve are illustrated. To dem-
onstrate the potential value of PSD curve parameterization, the
PSD curves for all adipose tissue and ILC samples tallied in
Table 1 are plotted together in Fig. 4(b). Adipose tissue and
ILC samples contain significantly different spatial frequency
content indicated by different HSF linear fit slopes and inter-
cepts. In contrast, visual inspection of all FCD and ILC PSD
curves, plotted together in Fig. 4(c), shows similar linear fits.
The comparison in Figs. 4(b) and 4(c) reinforces the concept
that different representations of texture may be effective at
distinguishing different types of tissue. With reference to Fig. 2,
the comparison also highlights the fact that when tissues appear
different visually, texture-based feature extraction algorithms
are likely to discriminate them quantitatively.

Fig. 3 Overview of the three texture analysis approaches in this paper: GLCM pixel statistics, structural
image primitives, and Fourier transform PSD curve parameters. Flow of processing starts with sampled
reflectance samples, which are converted to binary images via Bernsen thresholding, to GLCM scaled
images, and to the frequency domain via a 2-D Fourier transform for metric quantification. Representative
subimage samples are shown for (a) normal and benign tissue subtypes and (b) malignant tissue sub-
types. Dashed arrows signify additional processing steps.
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2.5 Classification Analysis

Previous studies have combined SFDI with classification analy-
sis. Laughney et al.23 were the first to apply SFDI to breast
cancer pathology discrimination. They used SFDI-derived
optical properties and a nearest-neighbor learning algorithm to
discriminate normal, fibroadenoma, ductal carcinoma in situ,
invasive cancer, and treated invasive cancer tissues with 82%
accuracy. McClatchy et al. used SFDI-derived optical properties
to predict stromal, epithelial, and adipose fractions in surgically
resected breast tissues with a threshold-based tissue classifica-
tion model. They demonstrated pixel-level classification accu-
racy of 75% and specimen-level accuracy of 84%.24 Beyond
breast tissue characterization, recent work by Rowland et al.41

used SFDI reflectance data at multiple spatial frequencies to
predict burn severity in a porcine model using a cubic support
vector machine (SVM) classifier. At 24 h, they demonstrated
92.5% accuracy classifying burn severity.

In this work, sd-SFDI reflectance texture metrics were pro-
vided as input to a machine learning framework for tissue
subtype classification. Binary classifications were performed
between the three benign and three malignant breast tissue
diagnoses. Texture feature vectors (11 total features, detailed
in Table 2) associated with one benign tissue subtype and one
malignant tissue subtype were classified using a linear SVM
classifier (MATLAB function fitcsvm with default settings42)
with correlation-based feature selection. Classification perfor-
mance was evaluated using random fivefold cross-validation
(CV). Fivefold CV was chosen such that each train/test set
contained >30 samples and was representative of the broader
dataset.43 Feature selection used two-sample t-tests (MATLAB
function ttest242) across all 11 texture metrics and a grid-search
for determining the optimal number of features to include
in classification. The grid search involved using a range of
features (e.g., one feature, two features, etc.) in the classification
model, and the optimal number of features corresponded to
the highest classification accuracy achieved. Feature selection
identified the most relevant parameters for classification,
thereby reducing the dimensionality of the classification
problem and mitigating overfitting to noise in the data.44

Classification used randomized sample size matching, which
injected randomness into classification results. Each classifica-
tion scenario was repeated n ¼ 100 times to quantify variability
in classification outcomes.

Receiver operating characteristic (ROC) curves were gener-
ated for every benign–malignant tissue subtype classification.
Area under the ROC curve (AUC), sensitivity, specificity, and
accuracy were quantified for every classification iteration. To
integrate results over all iterations, average ROC curves were
generated using a vertical averaging technique,45 and average
performance metrics were derived from the average ROC
curves.

3 Results and Discussion

3.1 Tissue Subtype Reflectance

Recent work by McClatchy et al.22 provides an in-depth discus-
sion related to sd-SFDI scatter as a contrast mechanism. A brief
overview is provided here. The composition and structure of
biological tissues are characterized by refractive index fluctua-
tions on the order of 10s of nm to 10s of μm. The angular prob-
ability of scattering is governed by the relative length scale of
the wavelength of light and these refractive index fluctuations.46

Structures on the same length scale or larger than the wavelength
of light cause Mie-type scattering, which is forward scatter
dominant. Meanwhile, structures that are smaller than the
wavelength of light give rise to Rayleigh-type scattering, which
is isotropic in nature with relatively more backscattering.
Reflectance-based sd-SFDI thus detects lower intensity signals
from forward-dominant Mie-type scatterers and higher intensity
signals from Rayleigh-type scatterers. By this mechanism, the
density, composition, and spatial arrangement of biological
structures in surface tissue (<1 mm in depth22) lead to different
subdiffuse reflectance textures.

The subdiffuse scattering behavior of various breast tissue
subtypes can be inferred from Fig. 2. Adipose tissue is com-
posed primarily of adipocytes, which contain forward-scattering
vacuoles with length scales >25 μm. Adipose tissue is thus
characterized by a relatively low intensity, homogeneous subdif-
fuse reflectance signal, which is observed in the top-left, dashed
yellow pane of Fig. 2. Connective or fibroglandular tissues
contain collagen fibers (length scale >1 μm), which are weakly
backscattering, and collagen fibrils (length scale of 10s of nm),
which act as strong Rayleigh scatterers. Together, these struc-
tures create relatively high intensity, structured subdiffuse
reflectance, as shown in the second row, dashed pink pane in
Fig. 2. FCD, a common type of benign lesion, can be charac-
terized by fibrosis (i.e., proliferation of connective tissue) of

Fig. 4 Normalized PSD curves for (a) all f x ¼ 1.37 mm−1, λ ¼ 490 nm samples tallied in Table 1; (b) only
adipose and ILC samples with linear fits applied to each diagnosis separately; and (c) only FCD and ILC
samples with linear fits applied to each diagnosis separately. Vertical, dashed, black and blue lines
delimit the LSF and HSF linear fit ranges, respectively. The derivation of the five PSD linear fit parameters
is illustrated in (b) in green.
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surrounding stroma, resulting in Rayleigh scattering structures
on the order of millimeters.47 These structures are visible in the
cyan-colored panes on the left side of Fig. 2. As a final example,
high-grade IDC is characterized by an elevated density of nuclei
(∼5 μm in diameter), which are relatively large, forward scatter-
ing cellular components. This may explain why high-grade IDC
yields a relatively low intensity, homogeneous subdiffuse reflec-
tance comparable to adipose tissue. Comparing adipose tissue
and high-grade IDC demonstrates that using sd-SFDI reflec-
tance texture analysis alone may not be effective for surface tis-
sue diagnostics, because different tissue subtypes may contain
biologically distinct Mie- or Rayleigh-type scatterers that give
rise to similar subdiffuse reflectances. In the case of adipose
tissue and high-grade IDC, sd-SFDI texture in combination with
color properties would overcome this limitation.15

In summary, Fig. 2 highlights the heterogeneity in reflected
signals from common breast tissues and shows that subdiffuse
reflectance enhances contrast to small-scale surface tissue tex-
ture relative to diffuse, planar illumination imaging. Figure 2
also qualitatively reinforces the concept that broad categoriza-
tion of breast tissues (e.g., normal versus malignant) is an over-
simplification of the tissue classification task.

3.2 Texture Metric Statistical Significance

Mann–Whitney U-test p-values were computed between all
benign and malignant breast tissue diagnoses using the 11 stat-
istical, structure, and transform-based texture metrics. Metrics
across all three representations of texture demonstrated sta-
tistically significant differences between the three benign and
three malignant tissue subtypes. The authors note that p-values
were quantified using texture metrics derived from all subi-
mages due to the limited number of samples of each tissue sub-
type. Consequently, p-values are not robust against interpatient

bias. This limitation could be overcome in future studies with
larger sample sizes.

3.2.1 Gray-level co-occurrence matrix pixel statistics

GLCM pixel statistics are summarized in Fig. 5. Subdiffuse
reflectance of adipose tissue exhibits low contrast, low correla-
tion, and high homogeneity relative to all malignant diagnoses,
shown in Figs. 5(a)–5(c), respectively. These results are
expected given that adipose tissue is predominately forward
scattering with relatively low intensity, unstructured reflectance.
Figure 5(d) indicates that adipose tissue can be separated from
all three malignant diagnoses with statistical significance using
GLCM metrics. Subdiffuse reflectance from connective tissue
and FCD exhibits high contrast, high correlation, and low homo-
geneity relative to all malignant diagnoses. The combination of
weakly backscattering collagen fibers and strongly backscatter-
ing collagen fibrils in connective tissue and the fibrotic nature of
FCD might explain these statistics. Notably, the three GLCM
statistics separate FCD from the malignant diagnoses, including
ILC. The probability of a breast cancer patient having both FCD
and ILC is relatively uncommon.15 However, the capability of
GLCM metrics to statistically separate these two diagnoses is
important; part I of this paper reported that optical scatter and
color properties alone were unable to statistically separate these
two diagnoses.

3.2.2 Image primitives

Image primitive metrics are summarized in Fig. 6. The Bernsen
local thresholding rendered many of the low intensity, low con-
trast adipose tissue samples featureless. This explains the low
fractal dimension, unit lacunarity, and zero Euler number for this
tissue subtype in Figs. 6(a)–6(c), respectively. High-grade IDC

Fig. 5 Boxplots for GLCM: (a) contrast, (b) correlation, and (c) homogeneity statistics for
f x ¼ 1.37 mm−1, λ ¼ 490 nm samples tallied in Table 1. Statistical discrimination between the three
benign and three malignant tissue subtypes using (Con)trast, (Cor)relation, and (Hom)ogeneity was
determined using a Mann–Whitney U-test. p-value heat maps are shown for (d) adipose, (e) connective,
and (f) FCD, versus intermediate-grade IDC, high-grade IDC, and ILC.
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samples follow a similar trend but to a lesser extent. The highly
structured reflectances characteristic of connective tissue and
FCD result in relatively high lacunarity, shown in Fig. 6(b).
These results are expected given the rotational variance of these
samples. Intermediate-grade IDC and ILC exhibit pockmarked
textures (Fig. 2) that result in elevated Euler numbers, indicated
in Fig. 6(c). Figure 6(f) shows that fractal dimension and lacu-
narity also statistically separate the rare combination of FCD
and ILC.

3.2.3 Power spectral density curve parameters

Figure 7 contains the PSD curve parameters derived from the
subdiffuse reflectance samples. In Fig. 7(a), FCD samples
present with relatively steep LSF slope, indicative of less
LSF range content overall. In Fig. 7(h), LSF slope and intercept
are both statistically distinct between FCD and the three malig-
nant tissues. HSF slope and intercept separate both adipose
tissue and connective tissue samples from the malignant tissue
samples. Adipose tissue presents with a steeper HSF slope,
because adipose tissue reflectance contains relatively less
HSF range content. Connective tissue samples exhibit a more
gradual HSF slope relative to the malignant tissues, because
connective tissue reflectance contains additional HSF features
relative to the malignant tissues.

3.3 Classification Analysis

The ROC curves in Fig. 8 reflect optimal classification perfor-
mance based on a feature selection grid search. Table 3 summa-
rizes optimal classification performance in the form of AUC,
sensitivity, specificity, and accuracy with 95% confidence inter-
vals. Adipose tissue versus intermediate-grade IDC and ILC can
be classified with relatively high accuracy compared to adipose
tissue versus high-grade IDC. Connective tissue can be classi-
fied against high-grade IDC with relatively high accuracy

compared to connective tissue versus ILC. FCD can be classi-
fied relatively well against high-grade IDC, whereas the model
is less effective at classifying FCD versus ILC. Accuracy con-
fidence intervals are wide for some tissue subtypes given the
sample sizes.

The texture features used in optimal classifications are
reported in Fig. 9 in heat map form. The most frequently used
metrics in benign–malignant classification pairs are boxed
in gray, and the percent of the n ¼ 100 classifications that
employed the given metric is displayed. Figure 9(a) indicates
that the most valuable metric for classifying adipose tissue ver-
sus intermediate-grade IDC or ILC is GLCM correlation, and
classifying adipose versus high-grade IDC involved a more
distributed selection of metrics. In Fig. 9(b), a range of metrics
were used to classify connective tissue versus intermediate-
grade IDC and ILC. GLCM correlation was always found in
the optimal classification of connective tissue versus high-grade
IDC. In Fig. 9(c), GLCM contrast and correlation were the most
important features for classifying FCD against the malignant tis-
sue subtypes. Figure 10 reports the optimal number of features
used in every benign–malignant classification. Values are aver-
aged over all n ¼ 100 iterations and rounded to the nearest inte-
ger. No classification scenario used more than eight texture
features on average. The benign–malignant pair that used the
most features for optimal classification was connective tissue
versus ILC, which demonstrated the poorest classification per-
formance overall.

3.4 Limitations and Future Work

The classification model used a linear SVM for binary classifi-
cation, but tissue diagnostics is inherently a multiclass classifi-
cation problem. The current model could be clinically relevant
given the tissue subtype-limiting benefits of preoperative biopsy.
Nevertheless, potential clinical value would be increased if it
were a multiclass classification model. Classification involved

Fig. 6 Boxplots for structural image primitive metrics of (a) fractal dimension, (b) lacunarity, and (c) Euler
number for f x ¼ 1.37 mm−1, λ ¼ 490 nm samples tallied in Table 1. Statistical discrimination between
these metrics are shown in Mann–Whitney U-test p-value heat maps for (d) adipose, (e) connective, and
(f) FCD versus intermediate-grade IDC, high-grade IDC, and ILC.
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Fig. 7 Boxplots of normalized PSD curve linear fit parameters for f x ¼ 1.37 mm−1, λ ¼ 490 nm samples
tallied in Table 1. Parameters include LSF range (a) slope and (b) intercept, HSF (c) slope and (d) inter-
cept, and (e) the spatial frequency at which the two fits intersect. Statistical discrimination between these
metrics is shown in Mann–Whitney U-test p-value heat maps for (f) adipose, (g) connective, and (h) FCD,
versus intermediate-grade IDC, high-grade IDC, and ILC.

Fig. 8 Classification performance using subdiffuse reflectance (f x ¼ 1.37 mm−1, λ ¼ 490 nm) and
evaluated by ROC curve analysis for (a) adipose, (b) connective, and (c) FCD, versus the threemalignant
tissue subtypes. Classification used a linear SVM classifier, correlation-based feature selection with grid-
searching, fivefold CV, sample size matching, and averaging over n ¼ 100 iterations. At most 11 texture
features were included in each classification.
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fivefold CV due to sample size limitations. With increased tissue
sample sizes, leave-one-out-CV (LOOCV), which partitions
the data by patient, specimen, or RoI, should be implemented.
Often, partitioning is done on the patient level and is referred to
as leave-one-patient-out CV. LOOCV avoids confounding sce-
narios when unique features contained within a single patient or
RoI are spread across multiple folds, thus appearing in both the
training and testing datasets and potentially leading to interpa-
tient model bias.43

Classification results reveal that reflectance texture analysis
has both strengths and weaknesses. Subdiffuse reflectance is
directly related to microscopic structures in tissue but does not
necessarily provide unique signals associated with all tissue sub-
types diagnosed on the histopathological level. Adipose tissue
and high-grade IDC cannot be accurately resolved using subdif-
fuse reflectance alone using the model presented here. The same
applies for differentiating between connective tissue or FCD
from ILC. Combining tissue texture features with other tissue
properties may overcome these limitations. For instance, quan-
titative color properties can readily separate adipose tissue and

Table 3 Summary of classification performance using subdiffuse SFDI-derived reflectance, a linear SVM classifier, correlation-based feature
selection with grid searching for the optimal feature set, and a total of 11 possible texture features. Accuracy 95% confidence intervals are given
in parentheses.

Adipose versus Connective versus FCD versus

IDC int IDC high ILC IDC int IDC high ILC IDC int IDC high ILC

AUC 0.97 0.77 0.98 0.79 0.93 0.58 0.91 0.93 0.67

Sensitivity 0.99 0.74 0.99 0.72 0.89 0.59 0.89 0.92 0.61

Specificity 0.86 0.67 0.90 0.71 0.95 0.50 0.79 0.92 0.65

Accuracy 0.92 0.70 0.95 0.72 0.92 0.55 0.84 0.92 0.63

(0.88 to
0.96)

(0.58 to
0.82)

(0.90 to
1.00)

(0.54 to
0.90)

(0.89 to
0.95)

(0.41 to
0.69)

(0.75 to
0.93)

(0.90 to
0.94)

(0.47 to
0.79)

Fig. 9 Feature selection for classification of samples using only subdiffuse reflectance texture metrics
(f x ¼ 1.37 mm−1, λ ¼ 490 nm). The percent of n ¼ 100 classification iterations that used specific texture
metrics are shown in heat map form for (a) adipose, (b) connective, and (c) FCD versus the three malig-
nant tissue subtypes. Texture features listed to the left of (a) apply to all subplots. Boxed percentages
identify how frequently the most important metric(s) were used in each benign–malignant classification
scenario.

Fig. 10 Optimal number of features (averaged over n ¼ 100 classi-
fication iterations and rounded to the nearest integer) determined
by correlation-based feature selection and grid searching for sample
classification using subdiffuse (f x ¼ 1.37 mm−1, λ ¼ 490 nm) reflec-
tance texture metrics.
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high-grade IDC.15 Future studies could focus on the collection
of a larger hold-out dataset, such that the classification model is
trained and tested on a subset of the data and a second subset is
reserved purely for assessing classification performance.

The potential benefits of subdiffuse reflectance texture quan-
tification over optical property quantification include a simpli-
fied data collection protocol, computational efficiency, and
avoiding light transport model assumptions, which may lead
to additional errors. Still, it is known that optical properties offer
invaluable characterization of a wide range of biological tissues.
Future work should compare surface tissue classification perfor-
mance using sd-SFDI reflectance textures and optical properties.
In summary, additional studies are required to validate these
classification results on even larger sample sizes, to test the
inclusion of other tissue properties in the classification model,
and to improve the generalization and applicability of the tech-
niques investigated in part II of this paper.

4 Conclusions
Today 15% to 35% of BCS patients require a second surgery due
to incomplete initial excision of tumor tissue. Intraoperative
optical imaging may help clinicians to reduce the positive mar-
gin rate in BCS by rapidly providing enhanced contrast to sur-
face tissue features over a wide FOV. Sd-SFDI shows promise
for this application. In part II of this paper, an sd-SFDI imaging
and analysis protocol for BCS tissue surface characterization
was introduced that uses one subdiffuse spatial frequency, one
blue optical wavelength, and reflectance texture. The protocol
leverages wide FOV sd-SFDI scatter as a contrast mechanism
and benefits from relatively fast acquisition and processing
times compared to optical property quantification. The protocol
avoids light transport model assumptions for metric quantita-
tion, because it analyzes intrinsic reflectance textures in the
imaged tissue. Finally, different combinations of pixel statistics,
image primitives, and PSD curve parameters provided statistical
significance between three benign and three malignant breast
tissue subtypes, and classification results provide one method
of determining the relative importance of these metrics for char-
acterizing resected BCS tissues. Reflectance texture in combi-
nation with other tissue features, such as color properties, may
offer clinically valuable diagnostics for intraoperative BCS mar-
gin guidance.
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