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Abstract. Two-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to
capture autofluorescence signals from cellular components to investigate dynamic physiological
changes in live cells and tissues. Among these intrinsic fluorophores, nicotinamide adenine dinu-
cleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD)—essential coenzymes
in cellular respiration—have been used as intrinsic fluorescent biomarkers for metabolic states in
cancer and other pathologies. Traditional FLIM imaging for NAD(P)H, FAD, and in particular
fluorescence lifetime redox ratio (FLIRR) requires a sequential multiwavelength excitation to
avoid spectral bleed-through (SBT). This sequential imaging complicates image acquisition,
may introduce motion artifacts, and reduce temporal resolution. Testing several two-photon exci-
tation wavelengths in combination with optimized emission filters, we have proved a FLIM
imaging protocol, allowing simultaneous image acquisition with a single 800-nm wavelength
excitation for NADH and FAD with negligible SBT. As a first step, standard NADH and FAD
single and mixed solutions were tested that mimic biological sample conditions. After these
optimization steps, the assay was applied to two prostate cancer live cell lines: African-
American (AA) and Caucasian-American (LNCaP), used in our previous publications. FLIRR
result shows that, in cells, the 800-nm two-photon excitation wavelength is suitable for NADH
and FAD FLIM imaging with negligible SBT. While NAD(P)H signals are decreased, sufficient
photons are present for accurate lifetime fitting and FAD signals are measurably increased at
lower laser power, compared with the common 890-nm excitation conditions. This single wave-
length excitation allows a simplification of NADH and FAD FLIM imaging data analysis,
decreasing the total imaging time. It also avoids motion artifacts and increases temporal reso-
lution. This simplified assay will also make it more suitable to be applied in a clinical setting.
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1 Introduction

Fluorescence lifetime imaging microscopy (FLIM) is applied in broad areas of the life sciences
and industrial fields for its ability to capture information from a smaller focal volume, inter
alia being independent of fluorophore concentration, but sensitive to environmental changes
such as pH and temperature and other advantages, which can all be exploited in scientific
investigations.1–9 Fluorescence lifetime is of particular interest for quantitative studies in scatter-
ing and absorbing samples, such as tissue sections, where intensity-based methods are
problematic.10–14 When FLIM is combined with multiphoton (MP) excitation, greater focal depth
is achieved, important for thicker tissue specimens, and out-of-focus fluorescence is avoided
with a smaller focal volume, without the need for a confocal pinhole. Two FLIM methods are
available: frequency-domain FLIM and time-domain FLIM.15–20 This paper uses the latter, also
called time-correlated single-photon counting (TCSPC).21 MP excitation illuminates molecules
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by infrared ranges that would otherwise require single-photon excitation in the UV region,
generally undesirable to live cells, because of phototoxicity at longer exposure.22

Beginning with the seminal work by Chance in the 1960s,23,24 exploiting the autofluorescent
properties of the coenzymes NADH (reduced form of nonfluorescent NAD+) and flavin adenine
dinucleotide (FAD) (oxidized form of nonfluorescent FADH2) for measuring the cellular reduc-
tion/oxidation (REDOX) states noninvasively, the REDOX field has grown exponentially.25,26

First, intensity-based methods were expanded,27–31 followed by fluorescence lifetime imaging
assays to monitor REDOX changes as markers for changed metabolic states.12,30,32–37 These
assays are of particular interest in measuring responses to treatment in various cancer pathol-
ogies, cancer being a metabolically heterogeneous pathology, being able to generate energy by
oxidative phosphorylation (OXPHOS) and (often preferentially) by glycolysis.9,38–41 A third
coenzyme, nicotinamide adenine dinucleotide (phosphate) [NAD(P)H], the phosphorylated form
of NADH, cannot spectrally be differentiated from NADH, so this paper follows convention to
describe the mixed lifetime/intensity signal as NAD(P)H. A heightened interest in expanding the
application and simplification of this FLIM assay arises from its potential to test suitability and
earliest response to drug treatment in cancer therapies. Chemotherapy response in animal models
and patients typically take days or weeks; this in vitro assay has been shown to predict results in
hours,35 potentially helpful to devise more individualized treatment modalities for patients.

While analysis of several FLIM parameters provides insights into physiological events in
cells and tissues for these intrinsically fluorescent coenzymes, the key indicators are described
in Table 1. The cascade of reactions involving several enzymes, changing NAD+/NADH, NADP
+/NADH, and FADH2/FAD ratios and the NAD(P)H/FAD intensity REDOX ratio,42–44 as well
as the recently suggested preferred REDOX ratio measurement, fluorescence lifetime redox ratio
(FLIRR),34 can be tracked by these FLIM parameters. The intensity fractions a1 and a2 are the
pre-exponential parameters associated with the shorter (τ1) and longer (τ2) lifetime components
of a biexponential fluorescence decay model. These parameters are determined by fitting the
model to the measured fluorescence decay data on a per pixel basis. a1% and a2% are normal-
ized parameters according to a1% ¼ a1∕ða1þ a2Þ and a2% ¼ a2∕ða1þ a2Þ.

Technological advances in FLIM instrumentation (hybrid detectors and lasers) and software
developments have greatly optimized data acquisition and sensitivity of FLIM output. Yet,
mostly to avoid spectral bleed-through (SBT), the acquisition of NAD(P)H and FAD lifetime
signals is commonly executed sequentially by illuminating the former in the 700- to 740-nm
range and the latter in the 880- to 900-nm range.45–50 This sequential imaging complicates image
acquisition and may introduce motion artifacts and reduce temporal resolution. Some investi-
gators have applied an expensive solution to the problem, using two parallel lasers, cutting down

Table 1 Main FLIM parameters.

Parameters Names

NAD(P)H-τ1 Free, nonenzyme-bound lifetime

NAD(P)H-a1% Free, nonenzyme-bound fraction

FAD-τ2 Free, nonenzyme-bound lifetime

FAD-a2% Free, unquenched fraction

NAD(P)H-τma Average lifetimes

NAD(P)H-τ2 Enzyme-bound lifetime

NAD(P)H-a2% Enzyme-bound fraction

FAD-τ1 Enzyme-bound lifetime

FAD-a1% Quenched fraction

FAD-τm Average lifetime

aτm ¼ ðτ1 × a1%Þ þ ðτ2 × a2%Þ∕ða1%þ a2%Þ.
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the laser wavelength switch-over time.51,52 A one-excitation wavelength has been proposed53 to
excite both NAD(P)H and FAD at the same time. However, there is a need for a comprehensive
study to cover aspects of intensity spectrum and fluorescence lifetime.

This paper presents an assay, using one wavelength (800 nm) to acquire NAD(P)H and FAD
FLIM signals simultaneously with optimized emission filters. We observed negligible SBT,
tested first investigating single solutions of both coenzymes, followed by mixed solutions to
mimic cellular conditions, and finally applied the assay to two prostate cancer (PCa) cell lines,
this group has used in previous publications.33–35 We compared the intensity spectrum and fluo-
rescence lifetime results with other wavelengths and finally found the optimized excitation wave-
length. The data are compared with the common standard assay of sequentially exciting cells
with 740 nm followed by 890 nm at the new filter combination.

2 Materials and Methods

2.1 Cell Culture

Different PCa cell lines from African-American (E006AA; provided by Roswell Park Cancer
Institute) and Caucasian (LNCaP) origins have been used in this study. The E006AA (or AA)
cells were maintained in high-glucose Dulbecco’s modified Eagle medium (Life Technologies)
supplemented with 10% cosmic calf serum (Hyclone), 1% penicillin–streptomycin (Life
Technologies), and 4 mM sodium pyruvate (Life Technologies). The LNCaP cells were main-
tained in RPMI 1640 (Life Technologies) supplemented with 10% cosmic calf serum (Hyclone)
and 1% penicillin–streptomycin (Life Technologies). All cells were maintained in the cell culture
incubator, at 37°C with 5% CO2.

2.2 Instrumentation

A Zeiss LSM-780 NLO confocal/MP microscopy system consists of an inverted Axio Observer
(Zeiss) microscope, motorized stage for automated scanning, Chameleon Vision-II (Coherent
Inc.) ultrafast Ti:sapphire laser with dispersion compensation to maintain pulses at the specimen
plane (690 to 1060 nm, 80 MHz, 150 fs) for MP excitation, and a standard set of dry and immer-
sion objectives. Two HPM-100-40 hybrid GaAsP detectors (Becker and Hickl) are coupled to the
nondescanned port of the microscope using two T-adapters (Zeiss) with proper dichroics and
bandpass filters to collect as much fluorescence as possible in the spectral ranges Em, NAD(P)H
channel: 450/50 nm FAD channel: 560/80 nm. The two channels also contain a 690-nm short-
pass filter (Zeiss) in the beam path to avoid excitation background. Two SPC-150 cards (Becker
and Hickl) synchronized with the pulsed laser and the Zeiss LSM-780 scan head signals collect
the time-resolved fluorescence in TCSPC mode using SPCM (version 9.74) acquisition
software. A motorized stage is used, an adjustable mini incubator maintains the temperature
of specimens at 37°C under humidified blood–gas mixture conditions during imaging using
Zeiss 40× NA1.3 oil apochromatic objective lens.

2.3 NADH, FAD and Calibrated Solutions

NADH (Roche 10107735001) and FAD (Sigma F6625) are diluted in 1× PBS (Gibco 10010023)
to the final concentration of 150 and 100 μM, respectively. The calibrated solution has the
mixture of the NADH and FAD at same concentrations.

2.4 Emission Spectrum Imaging

The emission spectra are collected under the lambda mode of Zeiss LSM-780 NLO. The
emission range is set from 415 to 615 nm and GaAsP detector set at a gain of 700.

2.5 FLIM Imaging

For solutions, excitation scanning was executed from 720 to 890 nm with 20-nm intervals.
The power of the laser was kept the same (average power 7 mW) during the scanning. Each
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wavelength uses 60-s collection time. FLIM images for cell specimens were collected under the
same condition as the solutions.

For the drug treatment experiment, we recorded several field-of-view (FOV) positions at the
before-treatment control image acquisition. PCa cells were then treated on microscope stage with
1-μM doxorubicin and reimaged at the same FOVs at 20, 40, 60, 80, 100, and 120 min after
treatment. Acquisition of NAD(P)H and FAD channel images simultaneously at 800 nm was
followed immediately by the traditional imaging method [NAD(P)H at 740 nm FAD at 890 nm],
both at 60 s (average power 7 mW at the specimen plane) for each wavelength.

2.6 FLIM Fitting

SPCImage 8.0 was used for FLIM fitting. Fitting conditions are established based on the B&H
handbook; 1-component incomplete model was used to fit pure NADH and FAD solutions, and
2-component incomplete model to fit calibrated solutions and cellular images. The offset and
scattering are set to “0.” Shift is optimized by testing several pixel positions on morphologies of
interest for optimal χ2 as close to 1 and shift is then fixed. These are preferred settings for fitting
2p-FLIM images with hybrid detectors and taken under complete black-out conditions.

2.7 FLIM Processing and Analysis

The FLIM processing follows as previous published.33 In short, photon reference images are
normalized [Figs. 1(a)–1(b)] to compensate for varying intensities (FIJI, plugins → integral
image filters → normalize local contrast): followed by zeroing the nucleus and creating single
pixel region-of-interest (ROI) by an ImageJ/FIJI custom plugin. The purpose of this sequence is
to create pixel locations by X − Y coordinates, specific for mitochondrial [Fig. 1(c)] morphol-
ogies. Those locations are then applied to the FLIM data to extract FLIM parameters in the data
pool. A custom Python code ultimately analyzes different data combinations to produce ratios,
means, medians, and histograms, further charted in MS Excel. FLIRR images are generated
using MATLAB.

3 Results

3.1 Testing Single Solutions of NADH and FAD

Based on published experiments54,55 of NADH and FAD in solution, we optimized the concen-
trations of the two coenzymes to 150 μM for NADH and to 100 μM for FAD to match cell
intensities. Several related objectives determined the choice of the final emission filter selection
of NADH at 450/50 nm and FAD at 560/80 nm (Fig. 2) and optimal excitation wavelength:
(a) minimizing NADH SBT into the FAD channel and (b) avoiding back-SBT of FAD into the
NADH channel. The first objective can be met as Fig. 3(a) demonstrates: NADH signal and its
SBT into the FAD channel are leveling off dramatically from 740- to 820-nm excitation, still

Fig. 1 Cell normalization and ROI selection in HeLa cells: (a) NAD(P)H intensity was used to
isolate dominant mitochondrial morphology. (b) After zeroing the nuclear region, intensity images
were normalized to compensate for varying intensities in a time course. (c) Pixel ROIs are gen-
erated by thresholding to ranges isolating mitochondrial morphology.
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resulting in sufficient photon count at 800 nm in the NADH channel for correct fitting. This
shows a potential excitation wavelength point where the FAD signal will be dominant in the
FAD channel. The percentage of the NADH bleed-through will be illustrated in the later fluo-
rescence lifetime experiments. The second objective is met showing negligible FAD SBT in the
NADH channel [Fig. 3(b)]. Here, the two solutions were excited at a 2% power level (∼7 mW)
throughout the 720 to 890 range of wavelengths at 20-nm intervals. The final interval was 30 nm
to show the traditional excitation wavelength for FAD. The 890-nm traditional excitation wave-
length of FAD does not generate a bright signal [800 provides a 10-fold photon increase over
890 nm as shown in Fig. 3(b)], the main reason why a higher laser power is required at 890 nm.
Our proposed 800-nm excitation wavelength generates a larger signal than at 890 nm at the same
power level as NADH excitation.

3.2 Intensities at Different Excitation Wavelengths—Mixed NADH and FAD
Calibration Solutions, Plus 3 Different Cell Lines

Following the experimentation with single solutions of NADH and FAD, the same approach was
used in a mixed solution of the two coenzymes at same molar concentrations, named “calibrated
solution.” In addition, three cell lines (HeLa human cervical cancer cells, AA African, and
Caucasian LNCaP PCa cells) were also excited at 20-nm intervals from 720 to 890 nm and
their intensities recorded in the NADH and FAD channels, emission filters 450/50 and 560/
80 nm, respectively (Fig. 4). At the different wavelength points in the FAD channel, the cali-
brated solution predicts a mixture of NADH SBT and FAD intensities, being highest at 740 to

Fig. 2 Emission spectrum of single NADH (150 μM) and FAD (100 μM) in solution. Emission
spectrum of NADH (solid line) and FAD (dashed line). Optimized filters for NADH (dark gray band,
450/50 nm BP) and FAD (light gray band, 560/80 nm BP).

Fig. 3 Normalized intensity levels measured at a range of two-photon excitation wavelengths (720
to 890 nm at 20-nm intervals): (a) NADH solution, 150 μM, showing normalized intensity levels in
the NADH and FAD channels at indicated excitation wavelengths on the x -scale. (b) FAD solution,
100 μM, showing normalized intensity levels in the NADH and FAD channels at indicated exci-
tation wavelengths on the x -scale. At the excitation range 780 to 800 nm, the NADH SBT into the
FAD channel is leveling off, and likewise, FAD back-SBT into NADH channel is very low.
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760 nm. The three cell lines follow similar trends and show expected intercell line variability,
influenced by the REDOX states and OXPHOS versus glycolysis ratios. The calibrated solution
serves therefore as a good approximation to mimic cellular conditions.

3.3 Emission Spectrum of Calibration Solution at Different Two Photon
Excitation Wavelengths

Having established that the calibration solution was a good approximation and standard for
measuring the effects of changing the excitation wavelength, this time the emission spectra
at each excitation point were recorded (720 to 860 nm in 20-nm steps) (Fig. 5). At 800 nm,
a “sweet spot” becomes apparent, with virtually no back-SBT from FAD into the NADH channel
and negligible SBT of NADH into the FAD channel with acceptable NADH intensity in the
NADH channel, as predicted in Figs. 3 and 4. Both calibration solution results are compared
with the single solutions spectra and found to be matching (red boxes in Fig. 5). Looking at
alternative single-excitation wavelengths, there is an increased NADH signal at 780 nm com-
pared to 800 nm, but still some spectral SBT into the FAD channel. At 820 nm, the spectra are
almost the same as pure FAD solution, but the NADH signal becomes too low for accurate
lifetime fitting, leaving the 800-nm excitation as the most balanced option, even though, photon
counts for NADH are visibly reduced, while sufficient for FLIM fitting.

3.4 Fluorescence Lifetime of Single NADH and FAD Solutions versus
Calibration Solution

The effects on lifetime at different excitation wavelengths, described earlier, are shown in Fig. 6.
NADH has a single exponential decay of 500 ps while FAD has a single exponential decay of
2800 ps. In the NADH channel, the excitation only extends to 840 nm because after 840 nm,

Fig. 4 Normalized intensity levels measured at a range of two-photon excitation wavelengths (720
to 890 nm at 20-nm intervals). (a–c) HeLa, African-American/Caucasian LNCaP PCa cells at nor-
malized intensity levels in the NADH and FAD channels at indicated excitation wavelengths on the
x -scale. (d) Calibrated solution, a mix of NADH (150 μM) and FAD (100 μM), at normalized inten-
sity levels in the NADH and FAD channels at indicated excitation wavelengths on the x -scale.
Compared with single solutions, cells are subject to other variables (e.g., REDOX states,
OXPHOS versus glycolysis balance), but generally follow the same trends in Fig. 4. The calibrated
solution can therefore serve to mimic cellular conditions.
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there are insufficient photons for a good fitting (see Fig. 3). Consequently, the single solutions of
NADH and FAD are fitted mono-exponentially in their respected emission channels; this also
applies to the calibration solution in the NADH channel, where no detectable FAD back-SBT
occurs and only NADH signal is detected. The fitting of the mixed calibration solutions is more
complex in the FAD channel where the detected signal contains both FAD and NADH bleed-
through; when the pure FAD signal is contaminated with NADH SBT, a biexponential fitting is
appropriate and τm (see Table 1) is used for comparison. In this fitting condition, the τ1 is the
NADH lifetime and τ2 is the FAD lifetime. The lifetime of the calibration solution from 720- to
740-nm excitation is mostly NADH SBT (a1% ¼ ∼100%), matching the lifetime in the NADH
channel. At 760/780 nm, the rising lifetime shows an increasing share of FAD contribution and
diminishing NADH SBT contamination. At 760 nm, τm ¼ ∼800 ps; based on Table 1 equation
τm ¼ τ1 a1%þ τ2a2%, we can calculate a1%, the intensity fraction of NADH, which is ∼86%,
and a2% ¼ 1 − a1% ¼ 14%. At 780 nm, τm ¼ ∼2000 ps, a1% ¼ 35%, a2% ¼ 65%. After
800 nm, a “pure” FAD signal (a2% ¼ ∼100%) appears, as indicated by the matching level
of the single FAD solution [Fig. 6(b)]. From 800 to 890 nm, we know the FAD signal drops

(a) (b)

Fig. 6 Average (τm) fluorescence lifetime results of single NADH and FAD solutions versus
calibration solution at different two-photon excitation wavelengths: (a) NADH emission channel.
In the absence of any meaningful FAD back-SBT, both, mixed calibration and NADH solutions
show only the NADH lifetime values at one-component fitting. (b) FAD emission channel: here,
the calibration solution is at two-component fitting, because of NADH-SBT; here τm consists of
τ1 NADH lifetime and τ2 FAD lifetime. At 720- and 740-nm excitation, τm is almost equal to the
NADH lifetime, indicating that the majority of the signal is contributed by the NADH-SBT. At 760
and 780 nm, increasingly the FAD fraction dominates τm as the NADPH-SBT fraction declines.
At 800 nm, the FAD lifetime matches that of the single FAD solution with virtually no contribution
from NADH SBT, an important observation for supporting the choice of this wavelength for both
coenzymes.

Fig. 5 Emission spectrum of calibration solution (150 μM NADHþ 100 μM FAD) at different two-
photon excitation wavelength. NADH emission filter 450/50 BP (dark gray band) and FAD 560/80
(light gray band). Calibration solution was excited from 720 to 860 nm in 20-nm steps. At 800 nm, a
“sweet spot” becomes apparent, with virtually no back-SBT from FAD into the NADH channel and
FAD emission of the calibration solution matching that of the single FAD solution, indicating neg-
ligible or no SBT contribution into the FAD channel (framed boxes, on the right and at the bottom
left). While photon counts for NADH are visibly reduced, they are sufficient for FLIM fitting.
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dramatically, so we finally picked 800 nm as our optimized wavelength to collect the best signal
with negligible NADH bleed-through. The greater lifetime is probably due to the dual-model
fitting in calibration solution compared to the single-model fitting used in the pure solution.
In short, this data support the choice of the single wavelength excitation at 800 nm.

3.5 FLIM Parameters of NAD(P)H and FAD at Different Excitation
Wavelengths in Two Cell Lines

In Figs. 7 and 8, FLIM parameter results for τ1, τ2, τm, and a2% at range of wavelengths are
described in African-American and Caucasian PCa cell lines, focusing on how the chosen single
800-nm excitation wavelength compares with the common 740 nm for NAD(P)H and 890 nm for
FAD. We show that there are some absolute differences compared to solutions because the
NAD(P)H and FAD in cells exist in both free and bound types. All the results are fitted in double
exponential decays. For NAD(P)H-τ1, the 800-nm excitation results are similar to the 740-nm
NAD(P)H results, after 800 nm, the value decreases due to the considerable photon drop (Fig. 4)
which causes bad fitting. For NAD(P)H a2%, the result at 800 excitation is larger than at 740
excitation, probably due to the change of quantum yield of NAD(P)H-bound and free moieties.
In summary, compared to the 740-nm excitation, 800 delivers similar τ1 and τ2 values, con-
firming the rationale of using 800 nm for NAD(P)H excitation. NAD(P)H-τm’s differences are
mainly driven by τ1 and a2%% (see equation in Table 1).

For FAD (Fig. 8), the situation is similar, comparing the chosen 800-nm excitation wave-
length with the traditional 890 nm. The 800-nm excitation shows similar results as 890 nm in
τ1; τ2 values. For FAD-τ1, before 800 nm, the values increase to the NAD(P)H-τ1 range
indicating the NAD(P)H-SBT. FAD a1% changes before 800 nm is mainly due to the
NAD(P)H-SBT and the changes after 800 nm are suggested to be due to the change of quantum

(d)(c)

(b)(a)

Fig. 7 Fluorescence lifetime parameter results at different excitation wavelengths in the NAD(P)H
channel for AA and LNCaP PCa cells: mean data for AA-African-American PCa cells (solid bars)
and Caucasian LNCaP PCa cells (light, patterned bars). (a) NAD(P)H-τ1, (b) NAD(P)H-τ2,
(c) NAD(P)H-τm, (d) NAD(P)H-a2%. We suggest that after 800 nm, the photon count is too low
for accurate fitting.
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yield of FAD-bound and free moieties. The FAD τm’s differences are mainly driven by τ1
and a1%.

In summary, the 800-nm excitation generates essentially the same NAD(P)H and FAD τ1, τ2
results compared to the traditional excitation wavelengths. At 800-nm excitation, both NAD(P)H
and FAD are excited at the same time, decreasing the complexity and time of imaging and

Fig. 9 Comparison of FLIRR parameters NAD(P)H-a2% and FAD-a1% and their ratio at 800 nm
versus 740/890-nm excitation in LNCaP PCa cells. (a) All data are based on single-excitation
wavelength 800 nm for NAD(P)H and FAD. FLIRR is the ratio of NADðPÞH-a2%∕FAD-a1%, a
marker for cellular REDOX. (b) NAD(P)H-a2% based on 740-nm excitation, FAD-1% at 890-
nm excitation and FLIRR as described above. Data from both wavelength approaches are from
identical FOVs and pixel locations. While some differences exist in absolute values, still within
broad statistical ranges, trends and conclusions drawn from the effects of treatment are the same.

(c) (d)

(a) (b)

Fig. 8 Fluorescence lifetime parameter results at different excitation wavelengths in the FAD
channel for AA and LNCaP PCa cells. Mean data for AA-African-American PCa cells (solid bars)
and Caucasian LNCaP PCa cells (light, patterned bars): (a) FAD-τ1, (a) FAD-τ2, (c) FAD-τm, and
(d) FAD-a1%.
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increasing the temporal resolution. The NAD(P)H-a2% and FAD-a1% have some differences in
their absolute levels at 800 nm because of the different quantum yields of bound and free species.
This difference does not diminish the utility of 800 nm because the absolute values of relative
fractions are less meaningful in the presence of interventions where the changes of relative frac-
tions reflect the metabolic shifts. We tested drug responses and show changes of these fractions
under the next heading.

3.6 LNCaP Prostate Cancer Cells Treated with Doxorubicin—Comparing
800-nm versus 740/890-nm Excitation

We previously developed the FLIRR measurement assay, initially driven by the need to make
this measurement in tissue sections, where the common intensity-based REDOX ratio is unsuit-
able because of light scattering and other intensity artifacts.34 We named this assay FLIRR for
fluorescence lifetime redox ratio, which consists of a ratio of the enzyme-bound fractions, i.e.,
NADðPÞH-a2%∕FAD-a1%.34 As reported previously, this ratio increases after doxorubicin
treatment, the putative mechanism being a normalization of OXPHOS, and in addition, restoring
the ROS equilibrium, which is disturbed as one of cancer’s strategies to block the apoptosis
pathway. The single wavelength assay is particularly relevant for the FLIRR measurement avoid-
ing motion and temporal artifacts potentially present in sequential imaging.

LNCaP PCa cells were imaged first as controls at all three wavelengths for three different
FOVs, treated on stage with doxorubicin and reimaged at identical FOVs at 20 min intervals for
2 h (Fig. 9). Either excitation approach would have reached the same conclusion that the cellular
REDOX state or FLIRR increases after doxorubicin treatment. In our previous publications, we
proceeded to perform additional, more nuanced segmented cell analysis, identifying subpopu-
lations, based on treatment response, deemed unnecessary for this proof-of-principle technology
paper.

Figures 10–12 show representative images for data in Fig. 9 at control, 40 min, and 60 min.
As we have observed in previous publications, this representative example of LNCaP cells
exhibits the heterogeneous nature of individual cells at control and after treatment and hence,
treatment response, with rising enzyme-bound NAD(P)H-a2%, a component of the REDOX
marker FLIRR. In Fig. 11, FAD-a1% shows the previously published decline after treatment,
more clearly seen at the 800-nm excitation. Figure 12 confirms the rising FLIRR ratio, also
published previously,34,35 demonstrating that the 800-nm excitation produces the same results
as the traditional excitation wavelengths.

(a)

(b)

Fig. 10 NAD(P)H-a2% images at 800-nm versus 740-nm excitation in LNCaP PCa cells. (a) 800-
nm excitation for NAD(P)H control and 40 min, 60 min after doxorubicin treatment; histogram dis-
plays the frequency distribution of the enzyme-bound fraction of NAD(P)H. (b) NAD(P)H-a2% at
740-nm excitation, and the respective frequency histogram.
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3.7 FLIM Parameters of NAD(P)H and FAD at Different Excitation
Wavelengths in Human Prostate Cancer Tissue Section

Human PCa tissue section demonstrates the successful application of the single wavelength exci-
tation in tissues. Imaging was conducted at identical assay conditions as the AA and LNCaP cell
lines to show that also here, the single 800-nm excitation wavelength compares well within
statistical ranges with traditional approaches. The very low values for NAD(P)H at 860- and
890-nm excitation are as a result of second-harmonic generation, which is avoided by choosing
800 nm (Fig. 13).

4 Discussion and Conclusions

Fluorescence lifetime imaging has evolved rapidly in the last decade with the availability of new
advanced instruments, software, and analysis methods and has become part of the imaging “tool

(a)

(b)

Fig. 12 FLIRR images at 800-nm versus traditional excitation in LNCaP PCa cells. (a) 800-nm
excitation for FLIRR control and 40 min, 60 min after doxorubicin treatment; histogram displays the
frequency distribution of FLIRR. (b) FLIRR at 740-nm excitation for NAD(P)H and 890 for FAD, and
the respective frequency histogram. Better FLIRR signal-to-noise image for single excitation
800 nm compared to two excitation wavelengths.

(a)

(b)

Fig. 11 FAD-a1% images at 800-nm versus 890-nm excitation in LNCaP PCa cells. (a) 800-nm
excitation for FAD control and 40 min, 60 min after doxorubicin treatment; histogram displays the
frequency distribution of quenched fraction of FAD. (b) FAD-a1% at 890-nm excitation, and the
respective frequency histogram.
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chest” for scientific exploration. Challenges remain concerning image acquisition times, image
processing, and analysis. Imaging the autofluorescent coenzymes NAD(P)H and FAD as a non-
invasive method in the context of metabolism is increasingly being applied. Traditional FLIM
assays involve sequential image acquisition, one for NAD(P)H at 700- to 740-nm excitation
range and FAD at 890- to 900-nm range. The latter, which actually has a peak absorption at
760 nm, is moved to a higher wavelength to avoid exciting NAD(P)H. Sequential imaging addi-
tionally poses potential issues of motion artifacts and temporal resolution.

The idea of using a single-excitation wavelength for NAD(P)H and FAD is an obvious one
and has been tried before,53 but not apparently in depth as demonstrated in this paper. These
publications have used 800 nm without completely justifying this choice by carefully examining
alternative wavelengths, particularly the NADH-SBT into the FAD channel was not addressed.
The latest publication used a custom-built multilaser system to excite NAD(P)H and FAD simul-
taneously at high laser power levels.52 Our paper describes instead a method to use commercially
available standard FLIM systems at standard laser power with one laser excitation.

In this paper, we have methodically moved from single aqueous solutions to mixed “cali-
bration” solutions (approximating cellular conditions), followed by applying the same excitation
wavelength ranges to three different cancer cell lines and a PCa tissue section, we finally decided
on the 800-nm excitation wavelength, offering the most optimal combination. On the way, we
tested optimal combinations of laser power and image acquisition time and achieved our objec-
tive by virtually eliminating any SBT from NAD(P)H into the FAD channel and back-SBT from
FAD into the NAD(P)H channel. We had to compromise of accepting lower photon counts for
NAD(P)H, however, quite sufficient for accurate lifetime fitting, with the associated benefit of
increasing the photon count for FAD at a lower laser power than needed for the common 890-nm
excitation. We finally applied the new assay to a doxorubicin treatment time-series of LNCaP
PCa cells (Figs. 9–12) and showed comparable results to the sequential excitation 740/890 nm
protocol and previously published data.34,35 For cells with a very different NAD(P)H and FAD
concentrations, the single 800-nm excitation may not be optimal. To search for a more suitable
single wavelength, the same method as presented in this paper can be used to find an alternative
wavelength.

Fig. 13 Fluorescence lifetime parameter results at different excitation wavelengths in the FAD
channel for human PCa tissue section. (a) Mean data for NAD(P)H-τm and a2%; the low means
at 860 and 890 nm are signals from second-harmonic generation. (b) Mean data for FAD-τm and
a1%.
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While there are some absolute differences in lifetime parameters at different excitation wave-
lengths, they are mostly in statistically acceptable limits. Publications in the FLIM field show
that a narrow range of MP wavelengths are common [700 to 740 for NAD(P)H, 850 to 900 nm
for FAD to avoid exciting NAD(P)H], presumably as a result of optimized instrument configu-
rations. Considering environmental variables, absolute data levels are usually not as significant
as changes occurring after some pharmacological or other intervention, which can be quanti-
tatively demonstrated.

Apart from the simplified image acquisition protocol, there is a substantial reduction in the
lifetime fitting and subsequent analysis process. Our method could be used for other NAD(P)H
studies, for example for NADH and NADPH separation.56 This could also be a major advantage,
when this assay is finally transferred to clinical applications in the cancer or other fields. The
FLIM assay—as we have shown33—can predict optimal drug choices and their effects in vitro in
a matter of hours versus days or weeks in patients. This translational step depends on the
availability of biopsies in the case of PCa or acute myeloid leukemia patient serum samples
(or equivalent cell lines with diagnosed, known mutations), which is in the realm of possibilities.
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