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Abstract. Different turfs have different growth characteristics, engendering differences in the number of main-
tenance cycles and amounts of pesticides used; therefore, studying their subtle color and shape differences
through image recognition is crucial. Our study proposes an improved least squares support vector machine
(LS-SVM) pixel classification method for this purpose. The sensitivity to local color changes in the hue, satu-
ration, and value color space is considered, and the Sobel operator is used to extract the homogeneity as pixel-
level color features. The maximum local energy, gradient, and second-order moment matrix of image pixels are
obtained as texture features using a Gabor filter. Seven shape features of different plant leaves are calculated,
multiple extracted features are used as LS-SVM classifier inputs, and samples are selected and trained with a
dynamic threshold. The trained classifier can be used for segmentation. The experiments showed that it could
use the local information of the color images and the excellent generalization ability of LS-SVM to segment lawn
plants effectively. Under different weather conditions, the penalty coefficient, C, and kernel parameters with
optimal generalization were Bayesian optimized to obtain a segmentation rate exceeding 95%. This algorithm
yields a higher classification rate for plants with less obvious differences in texture and shape and optimizes
space and time complexities. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.28.2.023034]
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1 Introduction
Lawn plants are classified based on corresponding standards
to enable green units to formulate reasonable plans and select
suitable lawn grass species. This can help maintenance staff
and promote the construction of modern ornamental gardens
and sport lawns. Different turf species have dissimilar growth
characteristics, resulting in different stubble heights and thus
different maintenance and pruning cycles; therefore, the
plant species must be classified. This study focused on tall
fescue, ryegrass, bluegrass, carpet grass, and other common
lawn grasses and used image recognition technology to clas-
sify them. After lawn types are identified, the theoretical
basis for setting the height of a lawnmower can be deter-
mined according to the respective growth characteristics
of the lawns to realize scientific and efficient mowing
operations.

In plant identification processes, flowers and fruits may
last for only a few weeks,1–3 whereas plant leaves remain
nearly constant throughout the year.4,5 Furthermore, leaf
shape is one of the most important visual features for
describing many plants; therefore, classification based on
leaf characteristics is crucial. Common classification tech-
niques include the k-nearest neighbor (KNN), probabilistic
neural network (PNN), and support vector machine (SVM)
classifiers; however, these techniques have obvious draw-
backs. For example, the KNN technique is expensive for
testing every instance,6,7 sensitive to noise, and provides
irrelevant inputs. Moreover, a PNN has a large network
structure and an excessive number of attributes.8,9 An SVM
classifier cannot easily be trained on large-scale training

samples and can only classify them into two categories.10

This study addresses these shortcomings by effectively
classifying leaves using a least squares SVM (LS-SVM)
classifier.11

Ingrouille and Laird12 classified oak species with 27 leaf
shape features using the principal composition analysis
method. Sixta13 used the internal distance of shape context
for leaf recognition. Rossatto et al.14 used the volume fractal
dimension and naive Bayesian classification for leaf image
recognition. Mallah et al.15 described a method for improv-
ing the recognition rate with a small training set and incom-
plete feature extraction. They used a K-nearest value
classifier combined with a feature vector and density estima-
tion method to improve the recognition rate. The recognition
rate reached 96% when three features were combined,
whereas it was 91% when four features were used. Du
et al.16 extracted plant leaf shape features and image-invari-
ant moments, and they used a mobile center hypersphere
classifier to recognize more than 20 plants. Wu et al.3 ortho-
gonalized the shape and texture features and increased
the number of recognition categories to more than 30
using a PNN. Priya et al.17 used the same feature dataset
as Ref. 3 to improve the recognition rate using an SVM.
Elhariri et al.18 combined the color features on the basis
of the shape and texture features to recognize more than
30 types.

Most lawn leaves have different shapes, rich colors, and
textures. Therefore, these are the main characteristics used to
distinguish plant species.19 Most of the leaves identified in
articles, such as Refs. 3 and 12–18, are relatively flat and
broad. However, the objects of leaf recognition in this
paper are all slender and clustered lawn plants, and the back-
ground information is relatively more complex. Therefore,*Address all correspondence to Xinyan Wang, E-mail: xinyanwang1@163.com
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the study in this paper is conducive to the development of
intelligent lawn mowers.

The main contributions of this study are as follows:
(1) based on the LS-SVM segmentation algorithm, an algo-
rithm was developed for effectively identifying and segment-
ing turf plant images; (2) common turf plants were classified
using the improved algorithms; and (3) the accuracy and
effectiveness of the turf identification were evaluated quali-
tatively for different weather conditions.

2 Lawn Recognition Algorithm
Lawn images may contain random noise due to the influence
of light, uneven exposure, camera distortion, or other types
of interference. To suppress the background interference
and random noise and to highlight the object region of
the image in the identification process, the image can be seg-
mented using an LS-SVM method with a dynamic threshold.
When a dynamic threshold is used for selecting the training
sample, a fast, stable, and reasonable training sample can be
obtained. When images are identified using the LS-SVM
method, the equality constraint in the standard SVM is
changed to an inequality constraint, and the quadratic pro-
gramming problem is transformed into a problem of linear
equations. Therefore, the computational complexity is
reduced considerably, and the computational speed becomes
higher than that of a general SVM. Figure 1 shows a detailed
description of the specific process steps for categorizing turf
plants using an LS-SVM and a dynamic threshold.

In the experiment conducted in this study, a Daheng
Image Company’s Mercury series mer-231-41u3c camera
was used to collect lawn images. The camera resolution
was determined to be 1920 × 1200, and it was matched
with an m0814-mp2 8-mm-focal-length lens.

During the collection of lawn images, the lawn height was
30 to 180 mm. To ensure that the lawn was in the camera
shooting range, the distance between the camera bracket
and the lawn level was set at 600 mm, and the camera center

was 90 mm from the ground. A total of 240 images of four
common lawns, tall fescue, perennial ryegrass, Kentucky
bluegrass, and carpet grass, were collected under sunny
and cloudy conditions, as shown in Fig. 2.

2.1 Dynamic Threshold
Due to shadows, different background contrast levels, burst
noise, and background gray-level changes, the lawn images
cannot be segmented effectively using traditional methods,
such as those involving a global fixed threshold20,21 or
an Otsu threshold.22 Therefore, a set of dynamic thresholds
related to pixel position can be used for local dynamic
threshold processing in a local neighborhood. The basic
steps of dynamic threshold segmentation are as follows:

Fig. 1 Flowchart of LS-SVM image identification based on a dynamic threshold.

Fig. 2 Four kinds of lawn images collected: (a) Kentucky bluegrass,
(b) perennial ryegrass, (c) tall fescue, and (d) carpet grass.
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1. The whole image is segmented into subimages with a
50% overlap, and the sizes are determined by the aver-
age filter. The mean filter determines the size of the
subimages, mainly by setting the size of the template
window, for instance as a 3 × 3 matrix.

2. Determine a histogram for each subimage.
3. Detect whether the histogram of each subimage is

bimodal, and if so, interpolate to obtain the threshold,
g0, of all the subimages, otherwise no processing is
performed.

4. Interpolate the threshold values of the subimages to
obtain the threshold value, gt, for the whole image.
Here, f is set as the customized pixel value offset,
which refers to the size of the mask. Its optimal range
is [5, 40].

5. The brighter part of the image is assumed to be the
grass sample. In each subimage, pixels satisfying
the condition g0 ≥ gt þ f are regarded as the object;
the remaining pixels are considered as the background.
If f is excessively small, many small areas containing
noise will be extracted. By contrast, if f is excessively
large, the region cannot be extracted easily. In this sce-
nario, the optimal value of f can be set as 10 based on
training with a large number of templates.

2.2 Color Spatial Feature Extraction
Compared with red, green, and blue (RGB) color space, hue,
saturation, and value (HSV) color space can express the tone
and brightness of color more directly. Furthermore, it can
separate color and brightness information. The equation23

for conversion from RGB to HSV is as follows:

EQ-TARGET;temp:intralink-;e001;63;387V ¼ maxðR;G; BÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;345S ¼
�

v−minðR;G;BÞ
v ; if v ≠ 0

0; otherwise
; (2)

EQ-TARGET;temp:intralink-;e003;63;309H ¼
8<
:

60ðG − BÞ∕½v −minðR;G; BÞ�; if v ¼ R
120þ 60ðB − RÞ∕½v −minðR;G; BÞ�; if v ¼ G
240þ 60ðR − GÞ∕½v −minðR;G; BÞ�; if v ¼ B

;

(3)

where ðR;G; BÞ represent the red, green, and blue coordi-
nates, respectively; S (saturation) and V (value) lie in the
range [0, 1], and H (hue) lies in the range [0, 360]. To elimi-
nate the influence of light on color, only pixel-level color
features are considered from the color space of S. Figure 3
shows the H, S, and V components of an image in the HSV
color space.

In the proposed algorithm, the pixel-level color features
that conform to the human visual system are divided into
two parts: discontinuity and standard deviation. Here, Px;y ¼
ðPH

x;y; PS
x;y; PV

x;yÞ indicates that the pixel is located at ðx; yÞ
with three components in an M × N size image, and CFx;y
represents the color features of pixel Px;y.

2.2.1 Compute the noise discontinuity

Discontinuity refers to the inconsistency of pixel gray values
at the junction of different regions; it mainly describes the

edge amplitude. The discontinuity of color components,
Pk
x;yðk ¼ H; SÞ, selected in this study is represented by ckx;y.

Sobel, Canny, Derish, Laplacian, and other edge operators
were used for the edge computation of the same noisy
images. The results show that the performance of the sec-
ond-order differential Laplacian operator is better than that
of other traditional edge operators. However, the images
must be enhanced and smoothed before the gradient calcu-
lation is performed.

Because determining the exact edge position is not nec-
essary, the discontinuity and gradient can be calculated using
the simple Sobel operator:

EQ-TARGET;temp:intralink-;e004;326;396ckx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gk2

x 0 þ Gk2
y 0

q
ðk ¼ H; SÞ; (4)

where Gk2
x 0 and Gk2

y 0 are the components of the gradient in the
x 0 and y 0 directions, respectively.

2.2.2 Compute the standard deviation

By assuming that the signal is ergodic, the standard
deviation, υkx;y, describes the intensity variation within a
local image window and is calculated for a pixel component,
Pk
x;yðk ¼ H; SÞ, as follows:

EQ-TARGET;temp:intralink-;e005;326;257υkx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d2
X

m;n∈Ωx;y

ðPk
m;n − μkx;yÞ2

s
; (5)

where x ≥ 2, m ≤ M − 1, y ≥ 2, n ≤ N − 1, μkx;y is the mean
value of the color component, Pk

x;yðk ¼ H; SÞ, in local
window, Ωx;y and is defined as

EQ-TARGET;temp:intralink-;e006;326;168μkx;y ¼
1

d2
X

m;n∈Ωx;y

Pk
m;n; (6)

where Ωx;y is a local window of d × d whose center is pixel
ðx; yÞ, and d is an odd number >1.

Fig. 3 H, S, and V components of color images: (a) original image,
(b) H component, (c) S component, and (d) V component.
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2.2.3 Compute the pixel-level color features

Herein, the local homogeneity of image pixels is defined by
pixel-level color features. Homogeneity is closely related to
the local information extracted from an image, and it reflects
the consistency of the color features in the local region.
However, the aim of image segmentation is to divide the
image into several homogeneous regions; therefore, the local
homogeneity, as a color feature for regional segmentation,
plays a major role in the process.

The local homogeneity consists of the standard deviation
and discontinuity of the color component, Pk

x;yðk ¼ H; SÞ,
and it is represented by

EQ-TARGET;temp:intralink-;e007;63;497hðPk
x;yÞ ¼ 1 − EðPk

x;yÞ × VðPk
x;yÞ; (7)

where

EQ-TARGET;temp:intralink-;e008;63;453EðPk
x;yÞ ¼

υkx;y
maxfυkx;yg

and (8)

EQ-TARGET;temp:intralink-;e009;63;414VðPk
x;yÞ ¼

ckx;y
maxfckx;yg

. (9)

Here, υkx;y and ckx;y represent the standard deviation and
discontinuity, respectively, of the pixel color component,
Pk
x;yðk ¼ H; SÞ, located at ðx; yÞ.

Finally, the pixel, Px;y, with CFx;y ¼ ½hðPH
x;yÞ; hðPS

x;yÞ�
can be obtained at location ðx; yÞ.

Figure 4 shows the pixel-level color characteristics of
the H and S components.

2.3 Texture Feature Extraction
Texture is usually combined with the color features and
applied to image segmentation. In this algorithm, the local
energy, local gradient, and local second moment are
extracted from the six directional subbands of the Gabor fil-
ter as pixel-level texture features. The Gabor filter can not
only reduce the influence of illumination and noise but it
also preserves the edge information of texture in different
scales and directions through its good bandpass and direc-
tional selectivity. Figure 5 shows the six directional subbands
of the Gabor filter.

2.3.1 Selection of the color space

The S component of the HSV color space is selected to
represent the texture because it closely matches the human
perception of lightness, and this color space can control the
color and brightness information independently.

2.3.2 Application of the Gabor filter to the S
component

In this study, a Gabor filter with six orientations and two
scale bands was used to decompose the S component.
Khan et al.’s24 research shows that 4 to 6 orientation sub-
bands could approximate the directional selectivity of the
human visual system, and two-level decomposition could
be selected for turf images. Figure 6 shows the Gabor filter’s
six directional and two scale subbands.

2.3.3 Extraction of the local energy

The local energy of the S component can be calculated24 as
follows:

Fig. 4 Pixel color feature matrix of the (a) H and (b) S components.

Fig. 5 Gabor filter’s six directional subbands: (a) 0 deg, (b) 30 deg, (c) 60 deg, (d) 90 deg, (e) 120 deg,
and (f) 150 deg.
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EQ-TARGET;temp:intralink-;e010;63;417

SESðx; yÞ ¼ ½Sðx; yÞ � G0
m;θ;ϕ;fðx; yÞ�2

þ ½Sðx; yÞ � Ge
m;θ;ϕ;fðx; yÞ�2; (10)

where * denotes the convolution, and G0
m;θ;ϕ;fðx; yÞ and

Ge
m;θ;ϕ;fðx; yÞ denote a pair of parity symmetric filters that,

respectively, represent the real and imaginary parts of the
Gabor filter.

Here, SES
m;nðx; yÞ represents the Gabor subband co-

efficients at location ðx; yÞ that corresponds to the
mðm ¼ 1.0; 2.0Þ scale and nðn ¼ 0 deg; 30 deg; 60 deg;
90 deg; 120 deg; 150 degÞ orientation. The local energy,
Ex;y, is defined as the maximum (in absolute value) of the
12 coefficients at location ðx; yÞ, which is one-pixel texture
feature at location ðx; yÞ:

EQ-TARGET;temp:intralink-;e011;63;247Ex;y ¼ max
m;n

fjSES
m;nðx; yÞjg: (11)

2.3.4 Extraction of the local gradient

The gradient is used to measure the change in pixel value in
the x and y directions, which is an important measure of
image features. If a region is smooth, its gradient is small.
In this algorithm, Gx;y is used to represent the maximum
value of the 12 gradient magnitudes at location ðx; yÞ,
which is another pixel texture feature at location ðx; yÞ:

EQ-TARGET;temp:intralink-;e012;326;671

8<
:Gm;n

x;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm;n2

x 0 þ Gm;n2

y 0

q
Gx;y ¼ max

m;n
fjGm;n

x;y jg : (12)

2.3.5 Extraction of the local second moment matrix

To describe the texture of lawn leaves, a texture feature based
on the local second-order moments can be used, which can
be considered as the covariance matrices of two-dimensional
random variables. The energy values in the two main
directions in the neighborhood are represented by their
eigenvalues. When one eigenvalue is greater than the
others, the local neighborhood represents the texture and
dominates the orientation. The second moment, Mm;n

x;y , of
the Gabor filter subband coefficient, Gm;nðx; yÞ, is expressed
as follows:

EQ-TARGET;temp:intralink-;e013;326;487Mm;n
x;y ¼ Gσðx; yÞ � ð∇IÞð∇IÞT; (13)

EQ-TARGET;temp:intralink-;e014;326;445ð∇IÞð∇IÞT ¼
�

Gm;n2
x Gm;n

x Gm;n
y

Gm;n
y Gm;n

x Gm;n2
y

�
. (14)

Here, * represents the convolution, ∇I represents the gra-
dient, Gm;n

x and Gm;n
y , respectively, represent the components

of the gradient in the x and y directions, and Gσðx; yÞ is a
separable binomial approximation to a Gaussian smoothing
kernel with a variance σ2:

EQ-TARGET;temp:intralink-;e015;326;364Gσðx; yÞ ¼
1

2πσ2
e−ðx2þy2Þ∕2σ2 . (15)

Here, Mm;n
x;y is a symmetric semipositive definite matrix;

and λ2ðλ1 > λ2Þ are defined as the eigenvalues of Mm;n
x;y ;

and ϕ is the main eigenvector of Mm;n
x;y . When λ1 and λ2

are negligible, the local neighborhood is approximated by
a constant, representing a nontextured area. In contrast,
a large value represents a textured area.

In the proposed algorithm, the sum of the eigenvalues λ1
and λ2 of the second moment matrix, Mm;n

x;y , is defined as the
pixel-level feature, Vm;n

x;y . The maximum value of the sum of
12 eigenvalues is represented by Vx;y, which is the third pixel
texture feature:

Fig. 6 Gabor filter subband images in six directions and two scales:
(a) 2 scale, direction is 0; (b) 2 scale, direction is 30; (c) 2 scale, direc-
tion is 60; (d) 2 scale, direction is 90; (e) 2 scale, direction is 120; and
(f) 2 scale, the direction is 150.

Fig. 7 Image of each pixel-level texture feature: (a) local energy, (b) local gradient, and (c) local second
moment.
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EQ-TARGET;temp:intralink-;e016;63;752Vx; y ¼ max
m;n

fjVm;n
x;y jg: (16)

Finally, the texture feature, TFx;y, of the image pixel, Px;y,
is obtained at location ðx; yÞ:
EQ-TARGET;temp:intralink-;e017;63;703TFx;y ¼ ðEx;y; Gx;y; Vx;yÞ: (17)

The image of each pixel-level texture feature is shown
in Fig. 7.

2.4 Shape Feature Extraction
In addition to the color and texture characteristics, shape fea-
tures constitute another typical characteristic of lawn plants.
Therefore, shape features can be added to the classification
and recognition processes. In this paper, the method pre-
sented in Ref. 25 is used to extract the geometric parameters
of four plants by the frequently used Fourier harmonic func-
tion. The shapes of different lawn plants have obvious
differences, which can be adequately described by their rec-
tangularity, aspect ratio, roundness, and sphericity.

The aspect ratio is defined as the ratio of the length to
the width of the rectangular blade.

Rectangularity is defined as the ratio of the blade area to
the minimum outer rectangle, which reflects the degree to
which the object fills the minimum external rectangle and
lies in the range (0, 1).

Circularity is defined as the ratio of 4π times the blade
area to the square of the circumference, l; it reflects the
degree of compact correlation between the blade and the
circumferential circle.

Sphericity is the ratio between the blade area and the cir-
cumference of the smallest circumscribed rectangle.

Eccentricity is defined as the ratio between the long axis
and the short axis of the blade.

Lobation is defined as the ratio of the shortest distance
between the center of gravity of the blade area and the boun-
dary to the short axis of the blade; it can reflect the amplitude
characteristics of the blade boundary.

The circumference-to-diameter ratio is defined as the ratio
of the blade circumference to the long axis (Table 1).

The geometric parameters of the blade region can be cal-
culated according to the extracted blade profile of the lawn,
including the blade area, A0, blade area perimeter, l, length,
aR, and width, bR, of the minimum external rectangle of the

blade region, the long axis a and short axis b of the blade
region, and the shortest distance, lmin, from the center of
the blade region to the boundary.

Table 2 shows the shape characteristics of lawn plants.

2.5 Least Squares Support Vector Machine
Identification Model

The classification and recognition of lawn plants is essen-
tially a complex multiclass discrimination problem. The clas-
sification of lawn plants is a small sample and multiclass
classification problem that can be solved using an SVM clas-
sifier. Therefore, a classifier model based on an LS-SVM, an
improved version of the traditional SVM method, was devel-
oped. This method adopts a least squares linear system as the
loss function and solves a set of linear equations instead of
the complex quadratic programming problem in the SVM.
Moreover, this method has a low computational complexity
and has the advantages of good generalization and a fast
learning speed.

Assume that the given training set is

EQ-TARGET;temp:intralink-;e018;326;383fðx1; y1Þ; · · · ðxl; ylÞg; ðx ∈ Rn; y ∈ fþ1;−1gÞ; (18)

where x is the input vector, l is the number of samples, n is
the dimension of the input vector, and y is the type of input
vector.

The basic idea of the LS-SVMmethod is to find the small-
est hyperplane kωk in a separable hyperplane, which is the
same as the classical SVM. However, the LS-SVM method
gives an ei correction for each data point; therefore, the prob-
lem of finding the hyperplane optimization is transformed to
a convex optimization problem:

EQ-TARGET;temp:intralink-;e019;326;253 min JLSðω; b; eÞ ¼
1

2
ωTωþ γ

1

2

Xl

i¼1

e2i ; (19)

EQ-TARGET;temp:intralink-;e020;326;192yiðωTϕðxiÞ þ bÞ ¼ 1 − ei ði ¼ 1; · · · lÞ: (20)

The Lagrangian method is used to solve the mentioned
optimization problem, which is transformed into solving a
linear equation:

EQ-TARGET;temp:intralink-;e021;326;149

�
0 −YT

Y ZZT þ γ−1I

��
b
α

�
¼

�
0
~1

�
; (21)

where α is the Lagrange multiplier, Z ¼ ½ϕðx1ÞTy1; · · ·
ϕðxlÞTyl�, Y ¼ ½y1; · · · yl�, ~1¼ ½1; · · · 1�, α ¼ ½α1; · · · αl�.

Table 1 The lawn shape characteristic formulas.

Shape feature Formula

Leaf aspect ratio K ¼ aR
bR

Rectangularity R ¼ A0
aRbR

Circularity D ¼ 4πA0

l2

Sphericity F ¼ A0
2�ðaRþbR Þ

Eccentricity E ¼ a
b

Lobation L ¼ lmin
b

Circumference-to-diameter ratio C ¼ l
a

Table 2 Shape characteristics of lawn plants.

K R D F E L C

Tall fescue 0.22 0.36 0.47 7.54 7.55 0.46 3.67

Kentucky bluegrass 0.14 0.23 0.45 4.03 7.86 0.12 7.57

Carpet grass 0.67 0.51 062 4.11 2.79 0.38 8.08

Perennial ryegrass 0.16 0.71 0.48 5.29 9.44 0.33 7.44
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In the LS-SVM method, the supporting value is propor-
tional to the error of the data points, ei, and γ is 1. This
method nonlinearly maps input parameters to the high-
dimensional feature space and constructs the same optimal
decision function as the classical SVM according to the prin-
ciple of structural risk minimization.

EQ-TARGET;temp:intralink-;e022;63;686fðxÞ ¼ signðω0 ∘ xþ b0Þ ¼ sign

�Xl

i¼1

αiyiKðxi ∘ xÞb0
�
:

(22)

Then, each test sample, xi, is substituted into fðxÞ, and the
type of test sample can be obtained.

3 Results and Analysis
An experiment was performed using a computer with an Intel
(R) i5-2520M 2.5 GHz quad-core processor with 4 GB of
memory. The algorithm was developed using VS2012 C#
along with the HALCON© 12.0.1 image processing library
(MVTec Software GmbH, Germany). The proposed algo-
rithm was evaluated using three evaluation criteria. In
Sec. 3.1, the segmentation performance of the fuzzy thresh-
old method, maximum between-group variance method

(Otsu), and the proposed algorithm are compared with a
complex background. In Sec. 3.2, the radial basis function
(RBF) kernel function of the LS-SVM and multifeature
fusion are selected as the recognition method through several
experimental comparisons. In Sec. 3.3, the stability and
accuracy of the algorithm under different illumination con-
ditions are verified.

3.1 Image Segmentation Evaluation Results
Four images with different complex backgrounds were
selected from the collected samples to evaluate the proposed
segmentation method. Figure 8(a) shows the original images,
and Fig. 8(b) shows the segmented images obtained using the
proposed algorithm. To further evaluate the segmentation
performance of the proposed method, the performance of
the proposed method was compared with that of the fuzzy
threshold method and Otsu method for various categories,
and the results are presented in Figs. 8(c) and 8(d).

As presented in Fig. 8, all three image segmentation algo-
rithms provided good segmentation performance levels for a
single plant with a simple background. For the relatively
complex background of the last three images (a2 perennial
ryegrass; a3 tall fescue; a4 carpet grass), the proposed

Fig. 8 Segmentation effect comparison of several segmentation methods: (a) original images of four
species of lawn (a1 Kentucky bluegrass, a2 perennial ryegrass, a3 tall fescue, and a4 carpet grass);
(b) image segmentation obtained by the algorithm in this paper; (c) image segmentation obtained by
the Otsu method; and (d) image segmentation obtained by the fuzzy threshold method.
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algorithm could ignore the remaining small weed areas and
identify the region of interest directly; this capability is con-
sistent with the human visual observation characteristics and
demonstrates the strong adaptability of the algorithm to
changes in lighting conditions.

3.2 Discrimination Using Support Vector Machines
This study proposes an LS-SVM-based method for segment-
ing and recognizing common lawn plants. First, a square area
of 3 × 3 pixels serves as the convolution unit, and the pixel
color features of the H and S components are selected as
two color input features. Second, the local energy, gradient,
and second moment are selected as the texture input features.
The leaf aspect ratio, rectangularity, circularity, sphericity,
eccentricity, lobation, and the circumference-to-diameter
ratio of the blade region are then selected as shape input
features. Finally, a suitable local threshold is selected
based on dynamic threshold processing, and 13 feature vec-
tors are constructed as the input for LS-SVM training sam-
ples for the recognition and classification of lawn plant
images.

In this study, four kinds of common lawn plants were
selected as objects to be identified. A total of 240 images
of the four selected plants are available, and every kind of
these selected plants can be found in the 60 images. A
total of 120 lawn images were selected randomly as the
SVM training set, and the others were selected as the test
set. To observe the recognition accuracy of the SVM
RBF, a linear kernel function, polynomial kernel function,
RBF, and multilayer perceptron kernel function (sigmoid)
were used for comparison. Table 3 shows the characteristics
of the identification test data for the different kernel func-
tions and their comparison.

Table 3 shows that when the RBF was used as the kernel
function of the SVM, the classification rate for the training
and test sets could reach 99.9% or more. This was the best
result among all the kernel functions. Bayesian optimiza-
tion,26 grid search,27 random search, and other methods
have been applied by many researchers to determine the val-
ues of the penalty coefficient, C, and the kernel parameter σ.
After a certain range of sample testing and comparison, the
Bayesian optimization was found to be the best choice in this
study, and the best values of C and σ were obtained (C ¼ 8
and σ2 ¼ 0.42).

Based on the same characteristics of the input vector, the
performance of the traditional SVM method was compared
with that of the proposed LS-SVM method. Table 3 shows
the classification results. Figure 9 shows that the LS-SVM
combined with color, texture, shape, and dynamic threshold
parameters provided the best segmentation results, and the
overall recognition rate for the four types of turf reached
92.88%. In addition, the recognition results for the four
types of turf were compared; the recognition rate for carpet
grass was the highest (94.1%), whereas that for Kentucky
bluegrass, it was only 85.37%. This is because the difference
between the shape and texture characteristics of Kentucky
bluegrass and other lawns is not obvious and is affected
by illumination and other noise. To further improve the

Table 3 Recognition rate using different kernel functions based on
multiple features.

Kernel function
Training recognition

rate (%)
Test recognition

rate (%)

Linear 96.9 87.8

Polynomial 99.8 91.6

Radial basis 100 99.9

Sigmoid 100 92.1

Fig. 9 Comparison of classification results using different recognition methods.
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recognition accuracy, the number of shape and texture fea-
ture parameters can be increased in a later stage.

3.3 Lighting Performance Discrimination
To verify the practicability of the proposed algorithm under
different weather conditions, a green lawn area was selected
as an experimental site. A total of 240 images were collected
at two times: once at noon on a sunny day and once at ∼ 3:00
PM on a cloudy day. The experiment showed that the overall
recognition rate on a sunny day was 92.3%, whereas that on
a cloudy day was higher, mainly because the light on sunny
days is direct, and the light on cloudy days is diffused, result-
ing in a higher contrast between the plants and the back-
ground, which makes the recognition rate on cloudy days
higher. Furthermore, the average recognition time on a
sunny day was 1.42 s higher than that on a cloudy day; none-
theless, this can meet the requirements of actual classifica-
tion (Table 4).

4 Conclusion
This paper proposes an image segmentation method based on
dynamic threshold and LS-SVM techniques. This method
adopts a 3 × 3 pixel square area as separate units. Then,
it selects two pixel color features, local energy, gradient,
and the second moment, which are taken as three texture fea-
tures, and seven blade shape regional characteristics as input
characteristics. Next, it applies the feature vector as the LS-
SVM input and adds the LS-SVM local dynamic threshold to
obtain the training sample used to classify images taken for
identification. The experiments showed that the algorithm is
highly accurate in different environments. For the recogni-
tion of turf plants with similar shapes and texture features,
more feature vectors can be added to the LS-SVM recogni-
tion model to train the samples. Considering the limitations
of the proposed algorithm, it is necessary to further optimize
the penalty coefficient, C, and parameters for more complex
environments to achieve the classification and recognition
requirements. In future work, we plan to optimize and
improve the algorithm and to classify more lawn plants to
establish a complete database for lawn plant identification
and classification. This can provide a theoretical basis for
accurately setting the height of cutters for ZTR mowers.
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Table 4 Recognition rate under different weather conditions.

Weather
environment

Number of
images/frame

Recognition
rate (%)

Average
time (s)

Sunny day 140 92.3 1.42

Cloudy day 100 95.6 1.36

Total average — 93.95 1.39
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