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ABSTRACT. Purpose: In women with biopsy-proven breast cancer, histologically normal areas
of the parenchyma have shownmolecular similarity to the tumor, supporting a poten-
tial cancer field effect. The purpose of this work was to investigate relationships of
human-engineered radiomic and deep learning features between regions across the
breast in mammographic parenchymal patterns and specimen radiographs.

Approach: This study included mammograms from 74 patients with at least 1 iden-
tified malignant tumor, of whom 32 also possessed intraoperative radiographs of
mastectomy specimens. Mammograms were acquired with a Hologic system and
specimen radiographs were acquired with a Fujifilm imaging system. All images
were retrospectively collected under an Institutional Review Board-approved proto-
col. Regions of interest (ROI) of 128 × 128 pixels were selected from three regions:
within the identified tumor, near to the tumor, and far from the tumor. Radiographic
texture analysis was used to extract 45 radiomic features and transfer learning was
used to extract 20 deep learning features in each region. Kendall’s Tau-b and
Pearson correlation tests were performed to assess relationships between features
in each region.

Results: Statistically significant correlations in select subgroups of features with
tumor, near to the tumor, and far from the tumor ROI regions were identified in both
mammograms and specimen radiographs. Intensity-based features were found to
show significant correlations with ROI regions across both modalities.

Conclusions: Results support our hypothesis of a potential cancer field effect,
accessible radiographically, across tumor and non-tumor regions, thus indicating
the potential for computerized analysis of mammographic parenchymal patterns
to predict breast cancer risk.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JMI.10.4.044501]

Keywords: breast cancer risk assessment; breast parenchymal patterns; radio-
mics; deep learning; image analysis

Paper 22325GRR received Nov. 23, 2022; revised Jun. 11, 2023; accepted Jun. 20, 2023; published Jul.
8, 2023.

*Address all correspondence to Natalie Baughan, nbaughan@uchicago.edu

Journal of Medical Imaging 044501-1 Jul∕Aug 2023 • Vol. 10(4)

https://orcid.org/0000-0002-3219-9291
https://orcid.org/0000-0003-3139-2898
https://orcid.org/0000-0001-5482-9728
https://doi.org/10.1117/1.JMI.10.4.044501
https://doi.org/10.1117/1.JMI.10.4.044501
https://doi.org/10.1117/1.JMI.10.4.044501
https://doi.org/10.1117/1.JMI.10.4.044501
https://doi.org/10.1117/1.JMI.10.4.044501
https://doi.org/10.1117/1.JMI.10.4.044501
mailto:nbaughan@uchicago.edu
mailto:nbaughan@uchicago.edu


1 Introduction
Breast cancer is the most commonly diagnosed cancer for women in the United States, and is
estimated to be diagnosed in approximately one in eight women in their lifetime.1 The Society of
Breast Imaging and the American College of Radiology recommend annual mammography
screening beginning at age 40 for women at average risk, and magnetic resonance imaging
(MRI) or ultrasound screening as an adjunct to mammography for women classified to be at
a higher risk.2 Screening mammography helps to reduce breast cancer-related mortality by ena-
bling detection at earlier stages, when treatment is generally more effective and less invasive.2,3

Variations in screening frequency and age at mammography initiation are present in different
recommendations from national and international bodies as a result of the balancing of the ben-
efits and harms of additional screening in the general population.3,4 Current recommendations in
the United States stratify average- from high-risk women primarily on the factors of family or
personal history of breast cancer, gene mutation status, and history of chest irradiation. However,
additional risk factors from mammography may provide information to help create a more per-
sonalized method of risk stratification, without the need for additional imaging or testing. Breast
density is an example of one such factor that can be assessed from screening mammography and
that is associated with an increased risk of breast cancer. However, breast density alone provides
marginal improvement to screening sensitivity, as over 40% of screening-age women have been
found to have heterogeneously or extremely dense breasts on mammograms, while the 5-year
absolute risk of breast cancer is 1% to 2.5% for all screening age groups.4,5 As a result, mammo-
graphic density alone has not been found to have high enough sensitivity in prediction of future
cancer to be used in most accepted risk stratification schemes.2,4

Previous studies have shown that artificial intelligence (AI) tools including human-
engineered radiomic features and deep learning features extracted from mammograms have addi-
tive value to current breast cancer risk assessment metrics, including breast density.6,7 Radiomics
and deep learning features offer methods to quantify a wide variety of parenchymal texture char-
acteristics that are not based on radiologists’ judgment. However, most studies focus on the
tumor region at the time of diagnosis, potentially overestimating the classification ability of such
methods for a risk stratification application.

In women with biopsy-proven breast cancer, histologically normal areas of the parenchyma
within the ipsilateral (and the contralateral) breast have shown molecular similarity to the tumor,
supporting a potential cancer field effect. It is hypothesized that such an effect may be a precursor
of malignancy or impact tumor recurrence.8 A field cancerization that is identifiable via mam-
mography, and confirmation of the distance to which this cancerization extends into the normal
adjacent tissue for various subtypes of breast cancer has yet to be confirmed in the literature.
Identification of a cancer field effect in mammography has the potential to provide a novel
approach to stratification of breast cancer risk in the general population by augmenting current
risk assessment models. Radiomic texture analysis and deep learning are particularly well suited
to identify and characterize potential signatures of a field effect in mammography due to their
ability to quantify a multitude of image characteristics. A first step in this analysis is to investigate
how these quantitative features may change with increasing distance from the tumor.

In this work, we used human-engineered radiomic features and deep learning features to
identify and characterize texture signatures of a field effect in mammograms of women with
biopsy proven breast cancer. A change in average feature values between breast parenchymal
regions may be indicative of an image-based cancer field or cancer associated characteristics.
Feature relationships as a function of the distance from the identified tumor could potentially aid
in defining a cancer risk model. To the best of their knowledge, the authors believe this is the first
study to investigate a field effect in mammography and the first to evaluate radiomic features of
specimen radiographs and their relation to mammographic features.

2 Methods

2.1 Dataset
The dataset consisted of 103 retrospectively collected patients with at least 1 identified malignant
tumor. Inclusion in the initial cohort was specified by patients who were diagnosed with breast
cancer and had undergone mastectomy for treatment of their breast cancer at MD Anderson
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Cancer Center between 2010 and 2017. Known germline mutation carriers were excluded.
Preoperative mammograms and intraoperative radiographs of the mastectomy specimens were
retrieved under Health Insurance Portability and Accountability Act-compliant Institutional
Review Board protocols. Patients with tumors occult on the craniocaudal (CC) view (n ¼ 18),
no preoperative mammograms available (n ¼ 8), for presentation preoperative mammograms not
available (n ¼ 2), and a breast region too small to fit a region of interest (ROI) (n ¼ 1) were
excluded. The remaining 74 patients were used in the analysis. In addition, a subset of 32 patients
had also undergone intraoperative radiographic imaging of the mastectomy specimen. In a con-
ventional clinical setting, specimen radiographs are used to verify removal of the targeted abnor-
mality and to evaluate the margins of the resection. Although evaluating specimen radiographs is
not typical clinical practice for risk assessment, radiomic features of the tissue in- and ex-vivo
may allow for a deeper understanding of the relationships of tissue texture for a potential cancer
field effect. Mammograms were acquired with a Hologic (Marlborough, Massachusetts, United
States) Lorad Selenia system (12-bit quantization, 70-micron pixels), and specimen radiographs
were acquired with a Fujifilm (Lexington, Massachusetts, USA) imaging system (12-bit quan-
tization, 50-micron pixels). Images were not pre-processed by the authors and all mammograms
were the clinical “for presentation” images of diagnostic quality.

The goal of this work is characterization of a potential field effect in women with confirmed
breast cancer on mammograms and specimen radiographs. To accomplish this goal, ROIs of
128 × 128 pixels were selected from four regions on the CC mammogram projection: within
the tumor (A), near to the tumor (B), and far from the tumor (C and D), as shown in
Fig. 1(a). Size and location of the tumors were visually assessed with the assistance of a research
specialist with over 15 years of experience in mammography. Near and far ROIs were placed by a
naïve user with guidance of the tumor ROI location (to avoid overlap) and training to avoid major

(a)

(b)

Fig. 1 Example ROI locations for (A) tumor, (B) near to tumor, and (C and D) far from tumor
regions on (a) CC-view mammogram and (b) the corresponding specimen radiograph for one
selected patient. The specimen radiograph shows four serial sections of breast tissue from the
same breast shown in panel (a).
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calcifications, markers, scars, and fatty tissue near the skin and the chest wall. If this was
unachievable for a given patient, the ROI was not selected. Manual ROI placement enables cer-
tainty that ROIs will not include these objects that may impact quantitative feature values, but
does not require a complex automation scheme for random placement. The “naïve user” was new
to the field of image quantification and mammography and can be assumed to not have back-
ground knowledge necessary to bias ROI location given the tissue appearance. Near ROIs were
placed in the closest “normal parenchyma” region to the tumor and far ROIs were placed as far
from the tumor on the tumor side breast as could fit in the parenchymal tissue avoiding fatty
tissue along the chest wall. Exact distance measurements were not specified as it is challenging to
estimate given unknown compression pressure and three-dimensional distance to the tumor in a
projection image. As such, the distribution of ROI locations used in this study is expected to
represent average region characteristics, not characteristics of an exact location. For each paired
mammogram and specimen radiograph analysis, corresponding 128 × 128 pixel ROIs were
selected by a breast surgical oncologist with over 20 years of experience in the field from three
regions across the serially sectioned specimen radiographs, as noted in Fig. 1(b): with in the
identified tumor (A), near to the tumor (B), and far from the tumor (C and D). For specimen
radiograph ROIs, distances of near and far ROI locations were designated as less than 2 cm from
the tumor and greater than 2 cm from the tumor, respectively.

2.2 Feature Extraction
An in-house AI workstation was used to automatically extract 45 radiomic texture analysis fea-
tures describing tissue contrast/intensity and structure in each breast region. Feature descriptions
are listed in the Appendix Table 1 and formulas can be found in the literature.9–13 For deep learn-
ing-based features, a transfer learning approach was used. AVGG19 convolutional neural net-
work architecture was first pre-trained on ImageNet.14 The generically trained network was then
used with the mammogram and specimen radiograph ROIs as the input, and 1472 generic deep
learning features were extracted from each of the 5 max pooling layers, similar to the approach
described by Antropova et al.15 To select only features that were relevant to each data set, deep
learning features with zero variance or features in which >50% of the values were zero were
removed. To further reduce the number of features, principal component analysis was utilized to
reduce dimensionality of the remaining features.16 The first 20 principal components (86.53% of
the total variance for mammograms, and 89.67% of the total variance for specimen radiographs)
were then used as pseudo-features, i.e., principal components serving as characteristic features,
for each region.

2.3 Statistical Analysis
To assess correlation of features between ROI regions within a given image type, the Kendall’s
Tau-b correlation test was used.17 This test allows for quantification of correlation between a
categorical independent variable (ROI region) and a numerical dependent variable (feature val-
ues); thus, it was selected for evaluating correlations on mammograms and specimen radiographs
separately. Kendall’s Tau-b is a nonparametric measure of the strength and direction of the asso-
ciation between two variables and is considered an alternative to the Spearman rank order cor-
relation coefficient for data with many ties in each group.17,18

To evaluate correlations in features between mammograms and specimen radiographs, the
Pearson correlation test was used.18 Pearson’s Rho is a commonly used measure of linear cor-
relation between two variables. This test allows for quantification of correlation between two
numerical variables, which is why it was selected to evaluate feature correlation between both
modalities. For calculation of Pearson’s Rho, only matched pairs of patients and corresponding
ROI regions with both mammograms and specimen radiographs were used (n ¼ 32 patients,
118 ROIs).

Both the metrics of Kendall’s Tau-b and Pearson’s Rho are bounded between −1 and 1, with
values of zero indicating no correlation and one indicating the strongest correlation, with the sign
indicating the direction of the relationship.

All hypothesis tests were adjusted for multiple comparisons using the Benjamini-Hochberg
correction.19 This procedure controls for the false discovery rate (FDR), the proportion of sig-
nificant results that are actually false positives. The Benjamini-Hochberg correction is
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recommended when the number of comparisons is large and is commonly used in exploratory
procedures, such as identifying differentially expressed genes.19,20 In this correction, to be con-
sidered significant, the p-value must be less than the rank of said p-value (the smallest p-value
would have a rank of 1, and the greatest p-value would have a rank of the total number of com-
parisons) divided by the total number of comparisons, multiplied by the selected FDR. Since this
was completed for each set of tests, 45 was the total number of comparisons for radiomic features
and 20 was the total number of comparisons for deep learning features. An FDR of 5% was
selected to keep the number of potential false discoveries low, whereas FDRs of 10% to
25% are commonly used in genomic studies.20

3 Results
Results of the Kendall’s Tau-b and Pearson correlation tests for all calculated radiomic features
are shown in Fig. 2. Features were grouped into categories representing similar underlying char-
acteristics. Color of cells for a given comparison represents the magnitude of the test statistic. For
Kendall’s Tau-b, cells that are a more saturated green represent stronger positive correlations and
cells that are a more saturated red represent stronger negative correlations. Similarly, for Pearson
correlation, cells that are a more saturated blue represent stronger positive correlations and cells
that are a more saturated orange represent stronger negative correlation. All color scales reached a
maximum color saturation at a value of þ∕ − 0.5 and are shown in white for test statistics equal
to zero. Asterisks in each cell represent correlations considered significant after Benjamini-
Hochberg correction using a 5% FDR. Results of this test emphasize changes in the absolute
values of features across the ROI regions.

For radiomic feature analysis, Kendall’s Tau-b test results indicated a majority of statistically
significant correlations between the tumor, near, and far regions in mammograms for intensity-
based histogram features, edge frequency features, and Fourier-based powerlaw beta features. In
the specimen radiographs, results indicated a majority of statistically significant correlations
between intensity-based histogram features, edge frequency features, and gray-level co-occur-
rence matrix (GLCM) features. Pearson correlation results identified a majority of statistically
significant correlations in intensity-based histogram features between mammograms and speci-
men radiographs, presenting a strong relationship across the tumor, near, and far regions in both
modalities. This result seems reasonable, given that tumors have been found to be more dense
and coarser in texture than parenchymal tissue, while indicating strong correlations across tumor
and non-tumor tissue.7,16,17

Highlighted features in Fig. 2 were selected as examples of the significant correlations from
the radiomic feature analysis to be plotted in Fig. 3. Features were selected as follows: (1) histo-
gramMax CDF – the strongest correlation for all mammogram and all specimen Kendall’s Tau-b
and Pearson tests, (2) Powerlaw beta 2 – the strongest correlation in a subgroup of features where
only the mammogram Kendall’s Tau-b test indicated statistical significance in a majority of the
features, and (3) GLCMMax Correlation Coefficient – the strongest correlation in a subgroup of
features where only the specimen radiograph Kendall’s Tau-b test indicated statistical signifi-
cance in a majority of the features. Correlations indicated that radiomic features from ROIs closer
to the tumor tended to show more similarity to the tumor than features from distant ROIs and
there were statistically significant relationships of these features across the parenchymal field in
in- and ex-vivo imaging.

Results of the Kendall’s Tau-b and Pearson correlation tests for all calculated deep learning
features are shown in Fig. 4. Since the deep learning features do not carry easily definable cat-
egories and intuitive meanings as the radiomic features, it is important to note that the deep
learning features represent principal components, and thus are listed in order of decreasing vari-
ance. The color scales and markers used to indicate correlation strength, direction, and signifi-
cance are the same as described for radiomic features in Fig. 2.

For the deep learning feature Kendall’s Tau-b test in mammograms, correlations between the
tumor, near, and far regions for the first three features and feature 7 were found to be statistically
significant. In specimen radiographs, results indicated a statistically significant correlation in
only feature 2. Pearson correlation results showed a statistically significant correlation in feature
1 between mammograms and specimen radiographs. These results seem reasonable, given that
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Fig. 2 Table of Kendall’s Tau-b and Pearson correlation test results for radiomic features on mam-
mography and specimen radiography. Kendall’s Tau-b was used to evaluate relationships
between mammogram ROI regions and specimen radiograph ROI regions separately, and the
Pearson’s correlation test was used to evaluate correlations between mammogram and specimen
features. Feature names highlighted in yellow were selected to be plotted in Fig. 3. The color of
each cell represents the direction and strength of each correlation as noted in the legend. The
asterisks denote correlations considered significant after Benjamini-Hochberg correction with a
5% FDR.
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the first principal components/features will describe the majority of the variance in the dataset
and the fundamental characteristics of the images.16

Highlighted features in Fig. 4 were plotted in Fig. 5 to demonstrate the correlations in the
first two principal components from the deep learning feature analysis. Supporting the result
found with radiomic features, correlations indicated that deep learning features from ROIs closer
to the tumor tended to show more similarity to the tumor than features from distant ROIs in in-
and ex-vivo imaging.

4 Discussion
Results of this study exemplify key relationships of the parenchymal field in women with cancer.
Understanding these features and relationships will provide important information in

Fig. 3 Boxplots of selected texture radiomic features in mammograms (a) and specimen radio-
graph texture features (b). Scatterplot of intensity-based histogram feature Max CDF, which had
the strongest correlation between mammograms and specimen radiographs (c).
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understanding a potential mammography-based cancer field effect. Correlation results from
radiomic features and deep learning principal component features showed preliminary evidence
of a relationship between feature values and ROI location with increasing distance from the
tumor.

For radiomic features calculated within the mammogram, statistically significant correla-
tions were primarily identified in histogram or intensity-based, edge frequency, and Fourier-
based features using Kendall’s Tau-b. Similarly, for deep learning features calculated within the
mammogram, the first three and seventh principal components indicated statistically significant
correlations. Although the underlying characteristics of principal component features cannot be
understood in the same way as radiomic features, it can be established that the first principal
components will represent the foundational characteristics of the object.16 Given this, it could
be reasonable to infer that the first principal components may also quantify how light or dark the
pixels from a given ROI are, describing the tissue intensity as well. This relationship across the
mammographic field in intensity may be related to underlying density of breast tissue in a given
region, as the tumor tissue has been shown to be denser, and therefore brighter on a mammo-
graphic image.7,21,22 Correlations across the field in edge frequency and Fourier-based features,
as seen in the mammogram radiomic features, has not been well documented in the literature and
should be investigated further to understand how these relationships may relate to a potential
field effect and breast cancer risk.

Kendall’s Tau-b correlation in radiomic features extracted from specimen radiographs
showed slightly different results than those found in the mammograms. Similar to the mammo-
gram results, the intensity-based and edge frequency features showed significant correlation with
increasing distance from the tumor. The significant correlation in the intensity-based features in
specimen radiographs could similarly be attributed to the underlying tissue density as represented
in a brighter area in radiographic imaging, as the solid tumor mass tends to be denser, and there-
fore brighter.7,21,22 However, the significant correlations in GLCM features, as opposed to the
Fourier-based features seen in the mammogram analysis, show a different aspect of the tissue

Fig. 4 Table of Kendall’s Tau-b and Pearson correlation test results for deep learning features on
mammography and specimen radiography. Kendall’s Tau-b was used to evaluate relationships
between mammogram ROI regions and specimen radiograph ROI regions separately, and the
Pearson’s correlation test was used to evaluate correlations between mammogram and specimen
features. Feature names highlighted in yellow were selected to be plotted in Fig. 5. The color of
each cell represents the direction and strength of each correlation as noted in the legend. The
asterisks denote correlations considered significant after Benjamini-Hochberg correction with a
5% FDR.
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structure exhibiting the correlation with increasing distance from the tumor. This change in the
specimen radiographs could result from the tissue structure changing representation when
removed from the body or a result of imaging with a different system. For deep learning features
extracted from specimen radiographs, only the second feature or principal component showed a
statistically significant correlation with ROI region location. It can be seen from Fig. 5 that the
first feature indicated lower values on average for tumor ROIs than near or far ROIs but, the first
feature did not show as linear a correlation with ROI region as feature 2 and failed to show
statistical significance after multiple comparisons correction. Since these features do not have
intuitive meanings in the same way that radiomic features do, the exact reasoning for this is not
fully understood and may be investigated further in a future study. However, the first principal
component for specimen radiographs may describe a characteristic that is not strongly correlated

Fig. 5 (a) Boxplots of selected deep learning features in mammograms and (b) specimen radio-
graph texture features. (c) Scatterplot of the first principal component, taken to be pseudo-feature
1, which had the strongest correlation between mammograms and specimen radiographs.
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with ROI regions, as many radiomic feature categories are also not strongly correlated with ROI
regions. While it is understood by the authors that evaluating specimen radiography is not typical
clinical practice for risk assessment, investigating these features offers a unique opportunity to
gain a more fundamental understanding of the field effect in both in- and ex-vivo imaging.
Further, to the knowledge of the authors, this is the first study to evaluate radiomic features
of mastectomy specimens.

Pearson correlation analysis between mammogram and specimen radiographs features for
both radiomic and deep learning extended the results to indicate statistically significant corre-
lations in both feature types across in- and ex-vivo imaging. For radiomic features, this was
shown primarily in the intensity-based histogram features, indicating that features describing
tissue intensity were highly correlated between mammograms and specimen radiographs.
Structure based features failed to show these statistically significant correlations in radiomic
features, which may be explained by changes in the tissue presentation when removed from the
body or changes resulting from using a different imaging system. For deep learning features, only
the first feature reached statistical significance. Given that the first feature is the first principal
component, it describes the largest percentage of variance of all deep learning features, indicating
a correlation between fundamental characteristics of the mammographic and specimen radio-
graph deep learning features.

Previous work by Baughan et al. investigated similar characteristics of the breast paren-
chyma in mammograms using radiomic features.23 While the results of the prior work indicated
similarity of parenchymal signatures across the entire breast, it is important to note that the
authors used a different statistical test (Kolmogorov Smirnov) and had also aligned the means
of each distribution for each comparison. Such alignment of the distribution means removed the
impact of the absolute feature value change and only investigated similarity of distribution shape.
Not aligning the distribution means particularly influences histogram or intensity-based features
and power law beta features, since their absolute values correlate to average gray values in the
ROI. Thus, those prior summary results agree with the results presented in our current
extended study.

Implications of these results and future studies may influence how patients are designated as
high versus average risk of breast cancer. This will require future studies that better describe the
physical extent of the cancer field for each tumor subtype and that quantify the risk associated
with the mammographically derived cancer field.

It is important to note that statistical significance here is for the purposes of discovery only,
not to indicate a clinical difference between two groups. For this reason, the Benjamini-Hochberg
multiple comparisons correction was selected to be added to the statistical analysis. Other
common multiple comparisons corrections, such as Bonferroni, control the family-wise error
rate and may be overly conservative when the number of comparisons is large, and the potential
cost of a false positive is relatively low. Identifying and emphasizing subgroups of features with a
majority of significant correlations also helps to reduce the probability of a false positive con-
clusion and does not focus on single-feature results.

There are notable limitations to this study. First, it should be acknowledged that the results of
this work have yet to be confirmed in a second independent cohort of women with cancer. Future
work should confirm the same groups of features show statistically significant correlations with
ROI location in a new cohort to improve robustness. This work also does not directly quantify the
robustness of the ROI locations selected, and how that may impact feature values. While similar
methods have been investigated for classification tasks, ROI location robustness should also be
investigated in the future for describing the cancer field.21 One primary limitation of this work
was the focus only on the features of women with breast cancer. However, this work aimed to
characterize features of women with breast cancer in order to gain an understanding of potential
signatures of a mammography-based field effect. Future work will look to incorporate these
findings into classification models for malignant versus low risk and malignant versus benign
lesions. Since this analysis only investigated features from images of women with confirmed
breast cancer, density values were not controlled for, and the results likely represent an average
distribution of breast densities; however, this will be investigated in future studies. The results
also did not stratify findings by the molecular subtype of breast cancer present for each woman,
due to the low number of patients within each subtype. The dataset of 74 total patients included
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26 hormone receptor-positive/HER-2 negative tumors, 25 HER-2 positive tumors, and 23 triple-
negative tumors. However, future analysis may find that feature relationships or presentation of a
field effect may be more prevalent for certain molecular subtypes, just as the clinical profile and
treatment of each molecular subtype varies.

5 Conclusions
The results of this study identified several characteristics of a potential mammography-based
cancer field effect using human-engineered radiomic and deep leaning-based features from
women with breast cancer. Radiomic analysis within mammograms indicated that features in
the subcategories of intensity-based and Fourier-based features from ROIs closer to the tumor
tended to show more similarity to the tumor than features from distant ROIs. Radiomic analysis
in corresponding images of specimen radiographs showed similar results in intensity-based and
GLCM features. Integration of novel data from specimen radiograph radiomic features showed
statistically significant relationships of intensity-based features across the parenchymal field in
in- and ex-vivo imaging. In deep learning features, similar relationships were found in both mam-
mograms and specimen radiographs within the first two principal components. These results
provide potential support for the presence of a cancer field effect, which is detectable from im-
aging studies alone, and support the development of computerized analysis of mammographic
parenchymal patterns to assess breast cancer risk.

6 Appendix
Radiomic texture analysis features describing tissue contrast/intensity and structure in each
breast region were calculated using an in-house workstation. Full feature descriptions and
formulas can be found in the literature.9–13 Appendix Table 1 gives the category, name, and brief
description of all 45 radiomic features calculated. These features are based on (a) fractal analysis,

Table 1 Categories, names, and brief descriptions of 45 radiomic features calculated for each
ROI.

Category Feature name Description

(a) Fractal analysis, including
box-counting and Minkowski
methods

Boxcounting dimension Fractal dimension estimated
based on box-counting method

Boxcounting dimension 1 Fractal dimension estimated
based on box-counting method

Boxcounting dimension 2 Fractal dimension estimated
based on box-counting method

Boxcounting dimension 3 Fractal dimension estimated
based on box-counting method

Boxcounting dimension 4 Fractal dimension estimated
based on box-counting method

Boxcounting dimension 5 Fractal dimension estimated
based on box-counting method

Minkod global MD Fractal dimension estimated
based on Minkowski method

(b) Edge-frequency analysis Edge frequency: mean gradient Average of edge gradient

Edge frequency: max gradient Maximum of edge gradient

Edge frequency: minimum
gradient

Minimum of edge gradient

Edge frequency: standard
deviation gradient

Standard deviation of edge
gradient
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Table 1 (Continued).

Category Feature name Description

(c) Gray-level histogram analysis Histogram average Average gray value within ROI

Histogram maximum CDF Gray-level threshold yielding 95%
of the area under the histogram of
the region

Histogram minimum CDF Gray-level threshold yielding 5% of
the area under the histogram of the
region

Histogram balance Ratio of (95% threshold-average)
to (average-5% threshold)

Histogram seventy CDF Gray-level threshold yielding 70%
of the area under the histogram of
the region

Histogram thirty CDF Gray-level threshold yielding 30%
of the area under the histogram of
the region

Histogram quasi balance Ratio of (70% threshold-average)
to (average 30% threshold)

Histogram skewness Denseness measure used to
characterize local tissue
composition

(d) Features based on Fourier
transform analysis

Fourier root mean square
(FRMS)

Root-mean-square variation
based on Fourier transform
analysis

Fourier first moment of power
spectrum (FFMP)

First moment of power spectrum
based on Fourier transform
analysis

(e) Neighborhood gray-tone
difference matrix

Coarseness Coarseness measure calculated
from neighborhood gray-tone
difference matrix

contrast Contrast measure calculated from
neighborhood gray-tone difference
matrix

(f) Powerlaw beta from power
spectral analysis

Powerlaw beta 1 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 2 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 3 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 4 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 5 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 6 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 7 Exponent beta estimated based on
powerlaw spectrum analysis

Powerlaw beta 8 Exponent beta estimated based on
powerlaw spectrum analysis
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including box-counting and Minkowski methods; (b) edge-frequency analysis; (c) gray-level
histogram analysis; (d) Fourier transform analysis; (e) the neighborhood gray-tone difference
matrix; (f) Powerlaw beta from power spectral analysis; and (g) the gray-level co-occurrence
matrix (GLCM).
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Table 1 (Continued).

Category Feature name Description

(g) GLCM GLCM contrast Measure of local image variations

GLCM correlation Measure of image linearity

GLCM difference entropy Measure of the randomness of the
difference of neighboring pixels’
gray-levels

GLCM difference variance Measure of variations of difference
of gray-levels between pixel-pairs

GLCM energy Measure of image homogeneity

GLCM entropy Measure of the randomness of the
gray-levels

GLCM homogeneity Measure of the image
homogeneity

GLCM information measure of
correlation 1 (IMC1)

Measure of nonlinear gray-level
dependence

GLCM information measure of
correlation 2 (IMC2)

Measure of nonlinear gray-level
dependence

GLCM maximum correlation
coefficient

Measure of nonlinear gray-level
dependence

GLCM sum average Measure of the overall image
brightness

GLCM sum entropy Measure of the randomness of the
sum of gray-levels of neighboring
pixels

GLCM sum variance Measure of the spread in the sum
of the gray-levels of pixel-pairs
distribution

GLCM variance Measure of the spread in the gray-
level distribution
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