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ABSTRACT. Purpose: Our study investigates the potential benefits of incorporating prior ana-
tomical knowledge into a deep learning (DL) method designed for the automated
segmentation of lung lobes in chest CT scans.

Approach: We introduce an automated DL-based approach that leverages ana-
tomical information from the lung’s vascular system to guide and enhance the
segmentation process. This involves utilizing a lung vessel connectivity (LVC) map,
which encodes relevant lung vessel anatomical data. Our study explores the
performance of three different neural network architectures within the nnU-Net
framework: a standalone U-Net, a multitasking U-Net, and a cascade U-Net.

Results: Experimental findings suggest that the inclusion of LVC information in the
DLmodel can lead to improved segmentation accuracy, particularly, in the challenging
boundary regions of expiration chest CT volumes. Furthermore, our study demon-
strates the potential for LVC to enhance the model’s generalization capabilities.
Finally, the method’s robustness is evaluated through the segmentation of lung lobes
in 10 cases of COVID-19, demonstrating its applicability in the presence of pulmonary
diseases.

Conclusions: Incorporating prior anatomical information, such as LVC, into the DL
model shows promise for enhancing segmentation performance, particularly in the
boundary regions. However, the extent of this improvement has limitations, prompt-
ing further exploration of its practical applicability.
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1 Introduction
Lung lobe segmentation plays a significant role in the evaluation and treatment of various lung
pathologies. This anatomical information becomes crucial for assessing the distribution and
extent of pulmonary diseases.1,2 Additionally, this information aids in optimizing treatment plan-
ning for such pathologies by focusing on the affected lobes.3 Many lung diseases primarily
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impact specific lung lobes,4,5 underscoring the relevance of lung lobe segmentation in diagnosing
and evaluating these conditions.

The lungs consist of five distinct anatomical and functional structures, divided by lobar
fissures (left oblique, right oblique, and right horizontal fissures).6 The bronchial tree and
vascular system are also independent across different lobes.

Lung lobe segmentation entails the identification of fissures between adjacent lobes. This
task can be challenging due to factors, such as incomplete fissure delineation,7 anatomical
variability in fissures,6,8 and overlapping boundaries due to lung diseases.9

Given this complexity, several methods in the literature focus on lung fissure detection. For
instance, Doel et al.10 conducted a comprehensive review of pulmonary lobar segmentation meth-
ods, including watershed algorithms,11 b-splines,12 and surface fitting based on the lobe fissure
model.13 Ross et al.14 introduced a thin-plate spline algorithm for fissure delineation, followed by
a maximum a posteriori estimation based on an atlas.

These methods have often concentrated on lobe segmentation in healthy subjects, with
limited consideration of pathological changes. However, a growing body of literature incor-
porates anatomical knowledge into the workflow for pathological lungs. For instance, ribs’
curvature15 and bronchi/trachea extraction16 have been integrated. Anatomical constraints from
surrounding organs17 and knowledge from the airways and lung vascular system18 have also
been used.

Deep learning (DL)-based methods have recently gained relevance in medical image
processing, including lung lobe segmentation.19–21 These methods aim to improve segmentation
performance even in the presence of lung abnormalities. Techniques, such as the P-HNN,22

U-Net,23 and V-Net,24 have been applied to lung lobe segmentation.25–28 These approaches often
involve adapting existing architectures and integrating them with innovative strategies to enhance
segmentation outcomes in the presence of lung pathologies.

The majority of studies focusing on lobar segmentation have concentrated on chest CT scans
obtained during the inspiration breathing phase. This preference is due to the anatomical con-
figuration of the lungs during inspiration: lung volume expands, revealing the overall anatomy
and enabling effective examination of the lung region. On the contrary, during expiration, lung
volume decreases along with the contraction of lobar fissures. Moreover, due to radiation expo-
sure concerns, expiratory CT scans are generally less analyzed.

This reduced suitability for fissure detection and analysis during expiration has led to
limited research and discussion regarding lung lobe segmentation in expiratory chest CT
scans. However, recent clinical studies have highlighted the diagnostic superiority of expira-
tion chest CTs for illustrating pathophysiological changes in patients with chronic obstructive
pulmonary disease (COPD).29 These studies underscore the significance of studying lung ana-
tomical and functional dynamics throughout the entire respiratory cycle, encompassing both
inspiration and expiration acquisitions.30 Additionally, advancements in lowering CT radiation
doses have enabled ethical examination of both inspiration and expiration scans, even in
healthy subjects.

Given these factors, this study aims to develop a DL-based method for lung lobar seg-
mentation, focusing specifically on expiration chest CT scans. The goal is to leverage prior
anatomical knowledge within the DL model to bridge the segmentation performance gap
between inspiration and expiration acquisitions. The main hypothesis is that incorporating
prior anatomical knowledge about lung vessels can enhance lobe segmentation. This hypoth-
esis is formulated based on observations of radiologists’ practices when annotating challeng-
ing lobes: in cases where the lobar fissure is not distinct, radiologists often visually explore
the surrounding region, seeking vascular structures that aid in identifying and delineating
boundaries between lobes.

Section 2 introduces the datasets utilized in the study and provides a comprehensive explan-
ation of the proposed approach, presenting various available alternatives. In Sec. 3, the results of
the proposed method are presented, focusing on segmentation performance and highlighting the
distinctions compared to baseline approaches. In Sec. 4, the main findings are discussed, illus-
trating the implications and insights gained from the study. Finally, Sec. 5 presents conclusions
drawn from the study’s outcomes, along with potential implications and applications of the
results.
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2 Materials and Methods
The aim of this study was to create and validate an automated method for lung lobe segmentation
in expiration chest CT scans. The primary goal was to investigate whether the segmentation
accuracy in expiration CT scans could be enhanced by incorporating prior anatomical informa-
tion into the DL model. This anatomical information was represented as a vector field within
the lung’s vascular region, capturing vessel connectivity. This representation was based on the
assumption that lung vessels in different lobes have distinct orientations, a premise supported by
clinical practice where radiologists often rely on vascular patterns to identify lobar boundaries in
challenging cases.

In our study, we introduced the lung vessel connectivity (LVC) map as an additional input
channel to the model to assess whether it could enhance the segmentation performance. We
employed three distinct network configurations, all based on the U-Net architecture. To com-
prehensively evaluate the impact of prior anatomical knowledge and the breathing phase, we
conducted an ablation study. This study involved treating inspiration and expiration CT volumes
separately, enabling a comparison of the same network architecture’s performance under differ-
ent breathing phases.

Furthermore, we tested the robustness of our proposed approach on two distinct datasets:
SCAPIS and COVID-19. These datasets encompass a range of conditions, including lung
lesions, pulmonary diseases such as COPD, and emphysema. This diverse set of data allowed
us to investigate how our segmentation approach performed in the presence of these various
factors.

2.1 Datasets
The study utilized two distinct datasets, each serving specific purposes.

1. Swedish CArdioPulmonary bioImage Study (SCAPIS). This dataset comprises a subset of
59 subjects selected from the SCAPIS study within the Stockholm Region. For each sub-
ject, two chest CT acquisitions are available, representing both the inspiration and expira-
tion breathing phases. This dataset includes a total of 118 CT scans, facilitating a
performance comparison between the two breathing phases. It covers both healthy subjects
(46) and individuals with pathological lung conditions (13), with diagnoses including
chronic airflow limitation (11 subjects), emphysema (5 subjects), and COPD (3 subjects).

2. COVID-19.31 This dataset includes 10 subjects with varying degrees of COVID-19-related
lesions in the lung region. It was employed to evaluate the performance of the proposed
methods when dealing with ground-glass opacities and mixed consolidation lesions com-
monly associated with COVID-19.

2.1.1 Data annotation

To generate ground truth data for the DL model, both the SCAPIS and COVID-19 datasets under-
went semiautomatic annotation processes. An experienced radiologist supported this annotation
task using an interactive tool available in MiaLab, a medical imaging software developed
in-house.

The annotation tool for lung lobe segmentation relies on the thin plate spline (TPS) algo-
rithm. Initially, the lung region is automatically segmented through a series of steps involving
threshold-based and model-based level set segmentation, following the approach outlined in
Ref. 32. In the final stage of the workflow, the user manually annotates the fissure boundaries
by placing landmarks along the lobar fissures. Subsequently, a TPS function is computed based
on these fissure annotations, enabling the interpolation and deformation of a 3D plane to align
with the manually annotated fissure boundaries.

2.2 Lung Vessel Connectivity
Several studies have explored the concept of anatomic lobe independence to facilitate the lung
lobe segmentation task, as mentioned in Refs. 11 and 18. This independence arises from the fact
that independent bronchial branches and vessel subsystems belong to different lobes, and they
can be leveraged to guide and assist fissure detection and lobe segmentation.
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In this study, the lung vascular system is incorporated into the segmentation task as prior
anatomical information, which the network can utilize to delineate the lobes effectively. This
approach involves two key steps. First, a fuzzy connectedness (FC) map is generated from the
chest CT volume. Subsequently, this map is further processed to derive the LVC map.

2.2.1 Fuzzy connectedness map

In this method, the FC map for the lung vessels is generated using an algorithm introduced in
Ref. 33, originally designed for coronary artery segmentation. The algorithm is briefly described
as follows.

1. A seed point is manually placed inside the heart region to initiate the FC algorithm.
2. A threshold window of 0 to 200 hounsfield units (HU) is applied to restrict the algorithm’s

propagation exclusively within the vascular region voxels. Any voxels outside this window
are marked as “deactivated” and are not included in the algorithm.

3. The algorithm’s propagation employs a growing approach. It starts from the seed point and
examines the 27-neighborhood voxels. Iteratively, a cost function is optimized to identify
the strongest connectivity for each voxel. This process is repeated for all 27 neighboring
voxels.

4. The algorithm continues until all the “active” voxels have been analyzed, and their respec-
tive cost functions have been optimized.

5. The voxel values in the FC map fall within the range of 0 to 26, indicating the neighbor
with the strongest connectivity. Each value corresponds to a specific neighbor, represented
as a 3D offset from the considered voxel (refer to Table 1 for details).

This FC map serves as a representation of LVC, aiding in the subsequent lung lobe segmentation
task (Fig. 1).

EQ-TARGET;temp:intralink-;e001;114;412fcmapðnÞ ¼
�
0 − 12;14 − 26; if 0 < CT½n� < 200

13; otherwise
: (1)

2.2.2 Lung vessel connectivity map

The LVC map is generated from the FC map and serves to indicate the direction of the strongest
connectivity for each voxel within the lung vessel region.

Due to the discrete nature of 3D images, a discretization error arises when assessing the
voxel’s strongest connectivity. This error occurs because there are only 26 neighbors for each
voxel, resulting in a limited range of values for connectivity directions.

Table 1 Neighborhood values and corresponding 3D offsets.

Index 3D offset ð�x;�y;�zÞ Index 3D offset Index 3D offset

0 −1;−~1;−1 9 0;−~1;−1 18 1;−~1;−1

1 −1;−~1; 0 10 0;−~1; 0 19 1;−~1; 0

2 −1;−~1; 1 11 0;−~1; 1 20 1;−~1; 1

3 −1; ~0;−1 12 0; ~0; 1 21 1; ~0;−1

4 −1; ~0; 0 13 0; ~0; 0 22 1; ~0; 0

5 −1; ~0; 1 14 0; ~0; 1 23 1; ~0; 1

6 −1; ~1;−1 15 0; ~1;−1 24 1; ~1;−1

7 −1; ~1; 0 16 0; ~1; 0 25 1; ~1; 0

8 −1; ~1; 1 17 0; ~1; 1 26 1; ~1; 1
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To address this discretization error, we introduce the concept of the “X’th generation strong-
est neighborhood” (x-GSN):

Definition 2.1 (x-GSN). The x-GSN of a voxel ðx; y; zÞ is defined as the voxel that can be
reached through x iterative steps, where at each step, the direction of the strongest connectivity
is followed.

Taking the x-GSN into account when assessing the strongest neighborhood connectivity
significantly reduces the discretization error. This is because it expands the number of possible
directions to 26x. In this particular approach, we chose to use the third generation strongest
neighborhood (3-GSN), denoted as x ¼ 3.

To create the LVC map, we first locate the 3-GSN of each voxel. Next, we calculate the
distance vector represented as Vx;y;z between the two voxels. Finally, the LVC vector, which
indicates the direction of the strongest connectivity, is generated by normalizing the vector Vx;y;z.

The resulting LVC map is a three-channel 3D volume, with each voxel containing the nor-
malized vector components as follows:

EQ-TARGET;temp:intralink-;sec2.2.2;117;371

~Vi;j;k ¼
" vx
vy
vz

#
∀ Vi;j;k ∈ LVCð3;H;W;DÞ:

The vectors are oriented from the center of each voxel toward the direction of the strongest con-
nectivity within the neighborhood, with only the segmented vessel voxels being considered.

The presented algorithms [Algorithm 1 and Eq. (1)] have two main implications in the
LVC map.

Algorithm 1 3-GSN algorithm to generate the LVC vector

generations ← 3

V i ← ðx; y; zÞ

V f ← ðx; y; zÞ

for gen ← 1 to generations do

V f ← argmaxVf
f cðV f Þ

end for

~Vx;y;z ¼ ðV f−V i Þ
kðV f−V i Þk

where f cðV f Þ returns the neighbor voxel with the strongest connectivity,
computed following Eq. (1).

V i,j

i,j

Fig. 1 Fuzzy connectivity map example. Only voxels within 0 to 200 HU are considered and
optimized. 3-GSN algorithm, highlighting the three iterative steps.
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1. Vectors outside the lung vessel segmented regions are set to ½0; 0; 0� (direction 13 in the FC
map indicates the direction toward the same voxel).

2. Since the seed point is inserted at the heart apex, the connectivity vectors point, on average,
from distal vessel capillaries toward the heart (Fig. 2).

In relation to the inclusion of the LVC map in the proposed method, we hypothesize that the
LVC vectors can assist the DL network in distinguishing and separating different lung lobes. To
provide evidence for this hypothesis, we analyzed the average vector orientation distribution
across the different lobes, aiming to demonstrate that LVC vectors belonging to different lobes

have well-defined and separated average orientations. The average vector orientation ~Vavgj
for

each vascular lobe subsystem j is represented in the following equation:

EQ-TARGET;temp:intralink-;e002;114;401

~Vsumj ¼
Xn
i¼1

2
4 ~vi;x
~vi;y
~vi;z

3
5; ~vi ∈ j; j ∈ ½LU;LL;RU;RM;RL�; ~Vavgj ¼

~Vsumj

k~Vsumjk
: (2)

The computational cost for generating the LVC map was ∼2 min per subject on average, on an
AMD Ryzen 9 12-core processor.

2.3 Deep Learning Framework
In this study, we propose a DL method to improve the lung lobe segmentation performance by
including an LVC map as an additional input information. In order to test this hypothesis, we
investigated several deep-learning approaches for the lung lobe segmentation task. The methods
are all based on the U-Net architecture. More specifically, they all share the common nnU-Net
framework.34 This is to unify the experiments in relation to a common framework for the pre-
processing steps, network architecture, and hyperparameter tuning.

2.3.1 nnU-Net specifications

Following the method presented in Ref. 34, the image resolution distribution within the dataset is
analyzed, and the image volumes are resampled according to the median resolution. Following
the image resampling, an image normalization step is performed; for the CT modality, the inten-
sity voxel distribution in the dataset is analyzed, and the voxel values are clipped within the
[0.5, 99.5] percentile range followed by a z-score normalization:

EQ-TARGET;temp:intralink-;e003;114;136Ix;y;z ¼
8<
:

I0.5p; if Ix;y;z < I0.5p
I99.5p; if Ix;y;z > I99.5p
Ix;y;z; otherwise

; (3)

EQ-TARGET;temp:intralink-;e004;114;72Inorm ¼ Ix;y;z − μ

σ
: (4)

Fig. 2 LVC vector field: vector orientation in the vascular tree.
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For the LVC maps, no intensity normalization is performed since the three-dimensional vector
components are already normalized within the range ½−1; 1�.

As described in Ref. 34, data augmentation is performed at training time: the applied tech-
niques are random rotations, random scaling, random elastic deformations, and gamma correc-
tion augmentation. In Table 2, the other training hyperparameter configurations are specified.

2.3.2 Network architectures

To evaluate the LVC contribution with respect to different network configurations and inputs,
we performed four separated set of experiments: baseline, LVC inclusion, multitasking, and
cascade (Fig. 3).

In the baseline approach, the standard nnU-Net pipeline is adopted and trained for a single
channel input CT volume, predicting the five lung lobes. In the second configuration (LVC), the
LVC map is included as an additional input channel in the network (four input channels: one for
the CT volume + three for the LVC map).

In the multitasking approach, a second decoding branch is added to the original U-Net archi-
tecture to predict the lung lobes and the fissure segmentation (Fig. 4). This architecture aims to

Table 2 Training configuration.

Hyperparameter Value

Optimizer Adam (default)

Learning rate 0.01

Loss function Combined Dice-cross entropy (default)

Epochs 1000 (default)

Iterations/epoch 250 (default)

Batch size 2

Conv-Batch-ReLU ×2

Max Pooling

UpConv
Skip Connection

CT Volume LVC Map Lung Lobes

Fig. 3 U-Net network architecture.
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guide the network in learning common anatomical features in the contracting path. In contrast,
the network focuses on learning separated contextual features for the two segmentation tasks
(lobe and fissure segmentation) in the expanding paths. The global loss is computed as a
weighted sum of the two single task losses:

EQ-TARGET;temp:intralink-;sec2.3.2;114;397Lglobal ¼ 0.7 � Llobe þ 0.3 � Lfissure:

The loss weights for the two terms were empirically assigned by considering the importance of
the two tasks. To ensure the justification and robustness of the chosen loss weights, three differ-
ent combinations were selected and compared to identify the optimal configuration: (0.5, 0.5),
(0.7, 0.3), and (0.9, 0.1).

Finally, in the cascade configuration, a two-step approach is adopted: in the first step, the CT
volume is used, alongside the LVC map, to train a model used for the fissure segmentation task.
The CT volume and the predicted fissure mask are subsequently provided as input to a second
U-Net, trained for the lobe segmentation task (Fig. 5). For this architecture, the assumption is that
the learning process can benefit from splitting the task into subsequent steps: in the first step, the
anatomical information (from CT and LVC volumes) is processed by a network to segment the
lobar fissures, whereas a second network focuses on the lobe segmentation task, assuming prior
knowledge about the fissure location. The two models are independently trained, as they are
combined at test time.

The fivefold cross-validation process required an average of 110 h per fold for each model,
utilizing a NVIDIA RTX 3090 GPU, resulting in a total of 550 h per experiment. Since two
models are generated for the Cascade experiments, the total time required is doubled to 1100 h.

3 Results
In order to investigate possible performance differences in relation to the breathing phases, two
different models are separately trained for the two breathing phases (inspiration and expiration,
59 volumes each). In contrast, only the expiration cases are considered for the multitasking and
the cascade experiments since in this case the aim is to evaluate the performance of different
model configurations in respect to expiration cases. For each of the experiments described above,
fivefold cross validation is performed on 48 cases, whereas 11 cases are used to evaluate the
different model performances on a test set of unseen cases.

Conv-Batch-ReLU ×2

Max Pooling

UpConv
Skip Connection

Lung FissuresCT Volume LVC Map Lung Lobes

Fig. 4 Multitasking U-Net network architecture.
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To better validate the different lung lobe model performances in relation to the breathing
phases, the trained models are also evaluated on a cross-test set: the models trained on expiration
cases are tested on the corresponding 11 unseen inspiration test cases and vice versa.

Finally, a model validation on the COVID-19 dataset is performed. Here the specific aim is
to evaluate lung lobe segmentation performances in the presence of COVID-19 lesions.

To evaluate the segmentation performance of all the models presented above, the predicted
lobe segmentation masks are compared with the corresponding manually annotated masks. We
selected the Dice score and average surface distance (ASD) as the two metrics to represent the
lung lobe segmentation performances: Dice provides an indication of the volumetric overlap
between the two segmentation masks, whereas ASD provides a better evaluation of the segmen-
tation results in terms of distance between the boundary regions. The size of the segmented
regions can explain this choice: large volumes, such as the lung lobes, can easily reach Dice
values above 0.8 since large portions of the volumes overlap. Consequently, a more accurate
evaluation of large segmented regions can be achieved by focusing on the boundary regions,
measuring and reporting the distance between the two surfaces. As anticipated in Sec. 2.3.2,
the method and results evaluation are performed in three distinct approaches (Fig. 6).

First, in a single-phase approach, the models are separately trained and compared between
the two breathing phases. Accordingly, the LVC contribution for the two breathing phases is
evaluated. In addition, the segmentation results from the different model architectures (single
U-Net, multitasking U-Net, and cascade U-Net) are compared.

Second, in the interphase approach, we investigated the model generalization capabilities in
relation to the breathing phase. More specifically, the models trained with CT volumes from only
one of the two breathing phases were tested on CT volumes from the other phase. As in a single-
phase approach, we analyzed the LVC contribution in improving the model generalization ability,
alongside the impact of the different model architectures.

Finally, we tested the trained models on 10 COVID-19 cases, evaluating the segmentation
predictions and comparing them in relation to the breathing phases and the LVC contribution.

3.1 LVC Evaluation
Together with the model evaluation, we decided to evaluate also the correctness of our main
hypothesis, i.e., LVC vectors exhibit different average orientations for different lobes. In order
to evaluate this assumption, we performed a multivariate analysis of the variance (MANOVA) on
the spherical coordinates (azimuth and elevation) of the LVC average vectors in relation to the
different lung lobes.

As presented in Table 3, this statistical analysis confirms our hypothesis, strongly suggesting
that the LVC orientation can provide useful prior information for discriminating the lung lobes.

Conv-Batch-ReLU ×2

Max Pooling
UpConv
Skip Connection

Lung FissuresCT Volume LVC Map
Lung Lobes

Fig. 5 Cascade U-Net network architecture.
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3.2 Single-Phase Evaluation
Table 4 compares the average Dice scores of a single-phase evaluation, indicating no significant
difference between the inspiration and the expiration models. Furthermore, the segmentation
performance appeared unaffected by the LVC inclusion and the different architecture choices.

Table 3 MANOVA analysis, performed on SCAPIS cases during expiration and inspiration
phases to explore the influence of lung lobe locations on the spherical coordinates of the LVC
map. This examination aids in understanding the variability of LVC information across different
lung lobes.

Dataset Effect Statistic Value Pr > F

SCAPIS-In Lung lobe Wilks’ lambda 0.879 6.89 × 10−9

SCAPIS-Ex Lung lobe Wilks’ lambda 0.910 0.000001

Fig. 6 Volumetric overlap between the right-upper annotated lobe (in red) and the predicted lobe
(in yellow): despite a Dice score of 0.85, the prediction visual appearance suggests a poor
segmentation performance, correctly reported by an ASD of 22 mm.

Table 4 Single-phase comparison of mean Dice scores, by lobe and globally (in bold).

LU LL RU RM RL Global

Baseline-IN 0.976 0.970 0.965 0.936 0.972 0.964

Baseline-EX 0.965 0.963 0.960 0.932 0.968 0.958

LVC-IN 0.977 0.973 0.967 0.935 0.974 0.965

LVC-EX 0.969 0.966 0.964 0.935 0.971 0.961

Cascade-EX 0.964 0.964 0.962 0.936 0.970 0.959

MT-EX 0.969 0.967 0.965 0.937 0.971 0.962

Abbreviations: IN, inspiration; EX, expiration; and MT, multitasking.
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In contrast, the analysis of Table 5 (ASD) reveals interesting distinctions. For the expiration
model, the LVC inclusion reduces the ASD from 0.95 to 0.86 mm (−9.5%, Fig. 7), whereas in the
inspiration model, the LVC positively affects the ASD score reducing it by 7% (from 1.07 to
1.0 mm). The multitasking architecture choice further reduces the ASD to 0.84 mm (−12% from
the baseline model, Fig. 8).

3.3 Interphase Validation
In this second approach, we investigated the ability of the models to generalize successfully with
respect to the other breathing phases. As represented in Table 6, LVC has a positive impact on
this ability of the expiration model (the average Dice score increases from 0.92 to 0.95, Fig. 9).
On the contrary, no significant improvement in the generalization capability can be observed
when including LVC information in the inspiration model.

Table 5 Single-phase comparison of mean ASD (mm), by lobe and globally (in bold).

Metric LU LL RU RM RL Global

Baseline-IN 0.862 0.892 1.451 1.274 0.891 1.074

Baseline-EX 0.855 0.850 1.120 1.200 0.746 0.954

LVC-IN 0.791 0.806 1.339 1.204 0.844 0.997

LVC-EX 0.750 0.776 1.016 1.063 0.695 0.860

Cascade-EX 0.870 0.832 1.066 1.109 0.733 0.922

MT-EX 0.733 0.776 0.964 1.031 0.691 0.839

Abbreviations: IN, inspiration; EX, expiration; and MT, multitasking.

Fig. 7 Comparison between baseline U-Net (baseline-EX) and LVC U-Net (LVC-EX) in expiration
phase: ASD (mm).

Fig. 8 LVC U-Net, cascade, and multitasking comparison in expiration phase: ASD (mm).
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In addition, Table 7 provides further evidence for the LVC ability to provide better gener-
alization performances; for the expiration model, the ASD is reduced from 4.3 to 2.1 mm
(Fig. 10). Furthermore, we achieved an additional ASD performance improvement by choosing
the multitasking architecture (from 4.3 to 1.4 mm, Fig. 11).

3.4 COVID-19 Validation
The LVC effect on the model segmentation performances in COVID-19 cases is analyzed in
Tables 8 and 9.

Table 6 Interphase comparison of mean Dice scores, categorized by lobe and globally (in bold).

Metric LU LL RU RM RL Global

IN-EX 0.960 0.955 0.943 0.927 0.961 0.949

LVC IN-EX 0.962 0.957 0.953 0.922 0.965 0.952

EX-IN 0.907 0.887 0.955 0.912 0.955 0.923

LVC EX-IN 0.970 0.960 0.961 0.923 0.964 0.955

Cascade EX-IN 0.920 0.897 0.958 0.907 0.954 0.927

MT EX-IN 0.970 0.962 0.963 0.931 0.967 0.959

Abbreviations: IN-EX, model trained in inspiration and tested in expiration; EX-IN, model trained in expiration
and tested in inspiration; and MT, multitasking.

Fig. 9 Interphase validation Dice score: comparison between baseline U-Net and LVC U-Net (LVC
EX-IN), trained in expiration phase and validated in inspiration phase (EX-IN). Note the underper-
formance of the baseline model (EX-IN, in blue) compared to the LVC model (LVC EX-IN,
in orange) on the LU and LL lobes.

Table 7 Interphase comparison of mean ASD (mm), categorized by lobe and globally (in bold).

Metric LU LL RU RM RL Global

IN-EX 0.974 1.037 1.635 1.305 0.941 1.178

LVC IN-EX 0.904 1.004 1.276 1.454 0.842 1.096

EX-IN 9.999 2.911 3.685 3.219 1.561 4.275

LVC EX-IN 1.357 1.577 1.712 2.359 1.211 2.054

Cascade EX-IN 9.304 2.592 2.185 6.776 1.796 4.531

MT EX-IN 1.424 1.423 1.620 1.572 1.070 1.422

Abbreviations: IN-EX, model trained in inspiration and tested in expiration; EX-IN, model trained in expiration
and tested in inspiration; and MT, multitasking.
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Fig. 10 Interphase validation ASD: comparison between baseline U-Net and LVC U-Net (LVC
EX-IN), trained in expiration phase and validated in inspiration phase (EX-IN). Similar to the obser-
vations in the Dice score figure, note the underperformance of the baseline model (EX-IN, in blue)
compared to the LVC model (LVC EX-IN, in orange) on the LU and LL lobes.

Fig. 11 Interphase validation ASD: LVC U-Net (LVC EX-IN), cascade, and multitasking model
comparison trained in expiration phase and validated in inspiration phase.

Table 8 COVID-19 comparison of mean Dice scores, categorized by lobe and globally (in bold).

Metric LU LL RU RM RL Global

IN-COVID19 0.958 0.940 0.918 0.856 0.940 0.922

EX-COVID19 0.943 0.927 0.916 0.881 0.938 0.921

LVC IN-COVID19 0.959 0.950 0.919 0.842 0.935 0.921

LVC EX-COVID19 0.958 0.950 0.922 0.880 0.952 0.932

Abbreviations: IN-COVID19, model trained in inspiration and tested in COVID-19 and EX-COVID19, model
trained in expiration and tested in COVID.

Table 9 COVID-19 comparison of mean ASD (mm), categorized by lobe and globally (in bold).

Metric LU LL RU RM RL Global

IN-COVID19 1.249 1.495 4.213 2.005 1.479 2.089

EX-COVID19 4.318 1.979 5.489 2.047 1.554 3.077

LVC IN-COVID19 1.072 1.353 3.801 4.496 1.652 2.475

LVC EX-COVID19 1.510 1.533 4.014 2.073 1.364 2.099

Abbreviations: IN-COVID19, model trained in inspiration and tested in COVID-19 and EX-COVID19, model
trained in expiration and tested in COVID.
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As illustrated in Fig. 12, the average Dice score for the expiration model increases from
0.92 to 0.93 when including the LVC information. Similarly, the ASD score is also improved
on the expiration model (decreasing from 3.1 to 2.1 mm, Fig. 13).

Notably, relevant improvements were observed in the Dice and ASD performance for the left
upper (LU) and left lower (LL) lobes. The Dice score for the LU lobe increased from 0.943 to
0.958 and for the LL lobe from 0.927 to 0.950. Similarly, the ASD for the LU lobe decreased
from 4.3 to 1.5 mm and for the LL lobe from 2.0 to 1.5 mm, upon integrating LVC information
into the model.

3.5 Multitasking Loss
As described in Sec. 2.3.2, we conducted a series of additional experiments on the multitasking
network architecture to determine the optimal loss weights for lung lobe segmentation and fissure
loss. We performed three separate experiments with loss weight combinations of (0.5, 0.5),
(0.7, 0.3), and (0.9, 0.1).

As reported in Table 10, we identified (0.7, 0.3) as the optimal weight configuration. This
selection is justified by demonstrating that the (0.5, 0.5) configuration did not adequately empha-
size lobe segmentation performance, resulting in suboptimal outcomes. Conversely, the (0.9, 0.1)
configuration was found to be too similar to the single-decoder LVC experiment, where lobe
fissure segmentation is excluded from the loss computation.

Fig. 12 COVID-19 validation Dice score: comparison between twomodels trained in the expiration
phase and validated with COVID-19 cases (LVX-EX-COVID19 and EX-COVID19), and two
models trained in the inspiration phase and validated with COVID-19 cases (LVX-IN-COVID19
and IN-COVID19).

Fig. 13 COVID-19 validation ASD: comparison between two models trained in the expiration
phase (LVX-EX-COVID19 and EX-COVID19) and validated with COVID-19 cases, and two
models trained in the inspiration phase (LVX-IN-COVID19 and IN-COVID19) and validated with
COVID-19 cases. Note the performance improvement when including LVC in the EX-COVID19
models (baseline in orange, LVC model in red).
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3.6 Statistical Analysis
To further validate our findings, we conducted a paired t-test to assess the significance of LVC
information within the segmentation context under examination. The null hypothesis asserts that
there is no average difference in the metrics presented (Dice and ASD). The resulting p-values
for various experiment comparisons are detailed in Tables 11 and 12. As shown in Table 11, small
but significant improvements in the Dice score are observed when comparing the baseline expi-
ration experiment (Baseline-EX) with the corresponding multitasking one (MT-EX). In the con-
text of interphase validation, notable results are seen when comparing the Baseline EX-IN model
with the multitasking EX-IN model, where the observed Dice improvement reaches up to 7.5% in
the multitasking model (for the LL lobe). However, only some of these improvements were
statistically significant. Similar observations are made when analyzing the statistical test for
improvements in ASD, where the mean ASD decreases by up to 8.6 mm (in the LU lobe) when
comparing the multitasking EX-IN with its corresponding baseline.

4 Discussion
In this study, we introduced a DL approach to enhance the segmentation of lung lobes in chest CT
scans acquired during the expiration phase. Our primary innovation involved integrating prior
anatomical information into the DL model in the form of an LVC map.

To assess the impact of LVC on segmentation performance, we conducted a thorough analy-
sis and compared the results from our DL models in both single-phase (intraphase) and inter-
phase scenarios to evaluate generalization robustness. Additionally, we examined the model’s
effectiveness in segmenting lung lobes in the presence of lung lesions using a COVID-19 dataset.

Our findings, as discussed in Sec. 3, highlight the benefit of incorporating LVC as prior
anatomical information into the DL model for improving lobar segmentation. Notably, we
observed a positive influence of LVC information on local segmentation accuracy, particularly
in the boundary regions of the lung lobes. This improvement is quantified through the analysis of
ASD scores. In the case of single-phase models, the inclusion of LVC information led to a reduc-
tion in ASD, demonstrating its efficacy for both inspiration and expiration models (Table 5).
Furthermore, our results indicate that adopting a multitasking U-Net architecture can further
enhance segmentation performance in these boundary regions. Conversely, a two-step cascade
approach did not significantly contribute to the segmentation results and, in some cases, even led
to performance degradation, as shown in the interphase validation comparison (Figs. 11 and 14).

A plausible explanation for this discrepancy is error propagation from inaccurate fissure
segmentation, which can result from variations in anatomical conformation between breathing
phases. This issue is further intensified in the presence of pathological lung diseases, where
incomplete fissures are common. As documented in the literature, segmentation performance
significantly deteriorates under these conditions, supporting the hypothesis that errors in fissure
segmentation contributed to the overall reduced performance in lobe segmentation.

We can draw similar conclusions regarding the generalization capabilities of the models. As
depicted in Table 7, the incorporation of LVC information guides the model to achieve improved
ASD performance, and the multitasking approach has a positive impact on the final segmentation
results. The Dice score results, particularly for the expiration models (Table 6), support this
notion in terms of generalizability.

Table 10 Mean Dice scores for lung lobe segmentation with different loss weights (Ll is the lobe
loss weight and Lf is the Fissure loss weight) in multitasking experiments, including the single-
decoder LVC experiment (LVC-EX) for comparison.

Ll Lf LU LL RU RM RL

0.5 0.5 0.954 0.965 0.909 0.816 0.964

0.7 0.3 (Selected) 0.969 0.967 0.965 0.937 0.971

0.9 0.1 0.963 0.967 0.956 0.928 0.965

1.0 0.0 (LVC-EX) 0.965 0.963 0.960 0.932 0.968
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Conversely, our models did not demonstrate a significant improvement in segmenting lung
lobes in the presence of COVID-19 lesions. While the expiration model displayed slightly better
performance with the inclusion of LVC information, the significance of these results cannot be
confirmed based on Tables 12 and 11.

While optimal segmentation results can already be attained with traditional methods,
our approach prioritizes local improvements in the segmentation of lobar boundary regions,

Table 11 Comparison of Dice scores across different experi-
ments, with n representing the number of cases examined.
The p-values from paired t -tests are presented, testing the null
hypothesis (H0) that the mean Dice scores of the compared
experiments are equal. This table reports the signed average
difference per lobe, where a positive value indicates an improve-
ment in the average Dice score.

Comparison Label E1 − E2

LVC-EX versus
baseline-EX
(n ¼ 59)

LU 0.004***

LL 0.003***

RU 0.004***

RM 0.003***

RL 0.003***

LVC-IN versus
baseline-IN
(n ¼ 59)

LU 0.001***

LL 0.003***

RU 0.002

RM −0.001

RL 0.002***

MT-EX versus
baseline-EX
(n ¼ 59)

LU 0.004***

LL 0.004***

RU 0.005*

RM 0.005*

RL 0.003***

MT-EX-IN versus
baseline-EX-IN
(n ¼ 11)

LU 0.063*

LL 0.075*

RU 0.008

RM 0.019

RL 0.012

LVC-EX-COVID
versus EX-COVID
(n ¼ 10)

LU 0.015

LL 0.023

RU 0.006

RM −0.001

RL 0.014

The three standard significance p-value levels are illustrated as follows:
*p-value <0.01
**p-value <0.001
***p-value <0.05
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as evident from the ASD results. This study’s potential applications lie in clinical scenarios
where the accurate delineation of lung fissure regions, i.e., the boundary regions between lobes,
is a primary requirement.

These findings will be valuable for future studies focusing on lobar boundary regions that
demand enhanced segmentation accuracy. Additionally, adopting a multitasking approach can
further improve segmentation results, enabling the simultaneous segmentation of lung lobes
along with their corresponding fissures.

Table 12 Comparison of ASD across different experiments, with
n representing the number of cases examined. The p-values from
paired t -tests are presented, testing the null hypothesis (H0) that
the mean ASD of the compared experiments are equal. This table
reports the signed average difference per lobe, where a negative
value indicates an improvement in the mean ASD.

Comparison Label E1 − E2

LVC-EX versus
baseline-EX
(n ¼ 59)

LU −0.105*

LL −0.074***

RU −0.104

RM −0.137

RL −0.051***

LVC-IN versus
baseline-IN
(n ¼ 59)

LU −0.071*

LL −0.086***

RU −0.112

RM −0.07

RL −0.047

MT-EX versus
baseline-EX
(n ¼ 59)

LU −0.122*

LL −0.074***

RU −0.0156**

RM −0.169

RL −0.055*

MT-EX-IN versus
baseline-EX-IN
(n ¼ 11)

LU −8.575

LL −1.488*

RU −2.065

RM −1.647

RL −0.491

LVC-EX-COVID
versus EX-COVID
(n ¼ 10)

LU −2.808

LL −0.446

RU −1.475

RM 0.026

RL −0.19

The three standard significance p-value levels are illustrated as follows:
*p-value <0.01
**p-value <0.001
***p-value <0.05
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4.1 Study Limitations
Despite the promising outcomes observed in this study when incorporating prior anatomical
knowledge into DL models for lung lobe segmentation in expiration chest CT scans, the same
findings exhibit weaker support when applied to DLmodels trained with inspiration CT volumes.

Moreover, the modest enhancements seen in the average Dice score results can be attributed
to the high performance already achieved with conventional DL-based segmentation methods,
such as nnU-Net.34 These state-of-the-art methods yield satisfactory Dice scores, allowing
limited room for further improvements.

Finally, it is important to exercise caution when interpreting the results related to COVID-19
lesions due to the study’s utilization of a limited number of COVID-19 cases (10). This limited
sample size may not be fully representative of broader populations.

5 Conclusions
This study highlights the significant advantages of incorporating LVC information in lung lobe
segmentation, particularly in the boundary regions between lobes. Additionally, our findings
support the notion that the inclusion of LVC information enhances the generalization ability
of the models. Notably, the models trained with expiration CT volumes exhibit improved gen-
eralization compared to those trained with inspiration volumes, as indicated by both Dice scores
and ASD.
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