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Expanding generalized contrast-to-noise ratio into
a clinically relevant measure of lesion detectability

by considering size and spatial resolution
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ABSTRACT. Purpose: Early image quality metrics were often designed with clinicians in mind,
and ideal metrics would correlate with the subjective opinion of practitioners. Over
time, adaptive beamformers and other post-processing methods have becomemore
common, and these newer methods often violate assumptions of earlier image qual-
ity metrics, invalidating the meaning of those metrics. The result is that beamformers
may “manipulate” metrics without producing more clinical information.

Approach: In this work, Smith et al.’s signal-to-noise ratio (SNR) metric for lesion
detectability is considered, and a more robust version, here called generalized SNR
(gSNR), is proposed that uses generalized contrast-to-noise ratio (gCNR) as a core.
It is analytically shown that for Rayleigh distributed data, gCNR is a function of Smith
et al.’s Cψ (and therefore can be used as a substitution). More robust methods for
estimating the resolution cell size are considered. Simulated lesions are included to
verify the equations and demonstrate behavior, and it is shown to apply equally well
to in vivo data.

Results: gSNR is shown to be equivalent to SNR for delay-and-sum (DAS) beam-
formed data, as intended. However, it is shown to be more robust against transfor-
mations and report lesion detectability more accurately for non-Rayleigh distributed
data. In the simulation included, the SNR of DAS was 4.4� 0.8, and minimum vari-
ance (MV) was 6.4� 1.9, but the gSNR of DAS was 4.5� 0.9, and MV was
3.0� 0.9, which agrees with the subjective assessment of the image. Likewise, the
DAS2 transformation (which is clinically identical to DAS) had an incorrect SNR of
9.4� 1.0 and a correct gSNR of 4.4� 0.9. Similar results are shown in vivo.

Conclusions: Using gCNR as a component to estimate gSNR creates a robust
measure of lesion detectability. Like SNR, gSNR can be compared with the Rose
criterion and may better correlate with clinical assessments of image quality for
modern beamformers.
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1 Introduction
The clinical value of a medical ultrasound image is determined by the clinician viewing the image
and depends on the clinical task being performed and their ability to make a correct assessment
from the available image. However, in research and development, it is not feasible to have a

*Address all correspondence to Siegfried Schlunk, siegfried.g.schlunk@vanderbilt.edu

Journal of Medical Imaging 057001-1 Sep/Oct 2024 • Vol. 11(5)

https://orcid.org/0000-0002-5170-8717
https://doi.org/10.1117/1.JMI.11.5.057001
https://doi.org/10.1117/1.JMI.11.5.057001
https://doi.org/10.1117/1.JMI.11.5.057001
https://doi.org/10.1117/1.JMI.11.5.057001
https://doi.org/10.1117/1.JMI.11.5.057001
https://doi.org/10.1117/1.JMI.11.5.057001
mailto:siegfried.g.schlunk@vanderbilt.edu
mailto:siegfried.g.schlunk@vanderbilt.edu
mailto:siegfried.g.schlunk@vanderbilt.edu
mailto:siegfried.g.schlunk@vanderbilt.edu


clinician or team of clinicians assess every image. Instead, image quality metrics that correlate
with clinician assessment are more efficient for large datasets or when quick iteration is needed.
A common line of thinking is that clinical image quality should correlate with the ability to detect
simple lesions. That is, a beamformer that reports more detectable lesions likely produces higher-
quality images. This is why image quality metrics such as contrast-to-noise ratio (CNR) are often
used. Though, in practice, image quality is a complex interaction between many aspects of the
image and imaging system, this work focuses on the challenge of simple lesion detection and
aims to create a robust metric for that task.

Smith and Lopez1 recognized that lesion detection relies not only on the contrast but also on
the size of the lesion, and so, they proposed the contrast-detail phantom for grading ultrasound
systems. This phantom uses cones of varying contrasts, and clinicians decide what combinations
of lesion size and contrast they can detect. Using the information from this phantom, Smith et al.2

proposed a metric that correlated with clinician assessment of detectability. Derived from the
statistics of ultrasound speckle, Smith et al. referred to this metric as signal-to-noise ratio (SNR)
and showed that it can even be used with the Rose criterion,3 a common threshold for detect-
ability used in general imaging applications. Though the abbreviation SNR has been used to
mean many different things, in this work, SNR refers only to Smith et al.’s metric. A thorough
description of SNR will follow in Sec. 2.1.

A critical drawback of SNR is that it is explicitly designed for delay-and-sum (DAS) beam-
forming,4 where the data are known to have certain statistical properties. Because of these proper-
ties, many image quality metrics tend to correlate well with the underlying information of the
DAS image. However, when using other adaptive beamformers, the resulting images may no
longer possess known speckle statistics, and traditional image quality metrics may no longer
accurately reflect the information of the image. In fact, it is surprisingly easy to create trans-
formations that improve SNR (or other traditional metrics) that do not change the underlying
information (i.e., clinical value).2,5,6 The use of ineffective metrics on adaptive beamformers
is recognized as an issue by many groups and has led to the development of more robust image
quality metrics that can more accurately compare these advanced beamformers. For example, the
dynamic range test,7,8 contrast ratio (CR) dynamic range,9,10 histogram matching,11 and gener-
alized contrast-to-noise ratio (gCNR)5 were all proposed to try and address this or similar con-
cerns. However, while more robust to the information content of an image, many of these have
not been tested with respect to clinician assessment, making it difficult at times to interpret the
clinical meaning of these measurements.

The goal of this work is to create a generalized version of SNR (gSNR) that can be applied
universally to modern adaptive beamformers. For the first time, we will analytically show that in
Rayleigh distributed environments, gCNR is a function of CR, which in turn is a function of the
contrast component used to calculate SNR. This allows gCNR to be used as a robust substitution
to calculate gSNR, which will be derived in the following pages. In addition, more robust options
for calculating lesion size and system resolution will be considered. This novel generalization of
SNR is robust to transformations (like gCNR) and will retain its relationship to clinical assess-
ments via the contrast-detail phantom and Rose criterion (like SNR). The challenges involved
with finding robust equivalents for the components of SNR will be explored, and solutions will
be proposed for each. An implementation of gSNR will be proposed, and both simulations and in
vivo data involving multiple non-DAS beamformers will be provided to demonstrate its behavior.

2 Image Quality Metrics

2.1 Signal-to-Noise Ratio
Smith et al.’s SNR for lesion detectability2 can be written as

EQ-TARGET;temp:intralink-;e001;114;148SNR ¼ CψM1=2N1=2: (1)

Smith et al. considered Cψ to be a signal-to-noise ratio component, whereasM is the number
of speckle correlation cells in the lesion area and N is the number of independently compounded
images (and will simply be 1 in this work). Cψ is based on the average intensity I of the lesion (L)
and background (B)
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EQ-TARGET;temp:intralink-;e002;117;736Cψ ¼ IL − IB
ðI2L þ I2BÞ1=2

: (2)

This bounds Cψ between 0 and 1 (0 for no contrast difference, and 1 for a truly anechoic
lesion).2

M ¼ S=Sc, the number of speckle correlation cells, is calculated from the size of the lesion,
S, and the correlation cell size, Sc. They found that the correlation cell size is based on the auto-
covariance of the speckle and determined that it is also comparable to the resolution cell size,
which they confirmed in phantoms.12 Therefore, they assumed that the speckle cell size is func-
tionally an ellipse with radii equal to half the lateral and axial resolution of the system. In their
work, they measured resolution as the full width at half maximum (FWHM) of the point spread
function (PSF) and pulse length.

A particularly useful aspect of SNR is that it can be used to grade an image without the need
for another reference image. Most metrics primarily have meaning when comparing multiple
images against each other, but as SNR relates to the contrast-detail phantom, the SNR value
itself has meaning and can infer the clinical quality of the image. In fact, it can even be linked
back to the well-known Rose criterion. The Rose criterion comes from a statistical analysis where
Albert Rose estimated that a signal amplitude of four to five times the root mean square of the
noise was required to identify the signal with near certainty.3 To guard against false positives,
Rose suggested that the threshold of five is more reliable, especially for larger pictures. Smith
et al.2 showed that a factor of

ffiffiffi
2

p
converts to the SNR used in this work, giving a converted

threshold of SNRT ¼ 5=
ffiffiffi
2

p
≈ 3.54 for the SNR defined here.

2.2 Generalized Contrast-to-Noise Ratio
gCNR5 is described as a lesion detectability metric and a more robust version of the traditional
CNR, which itself is popular due to the expectation that CNR correlates with subjective image
quality.13 gCNR is measured as gCNR ¼ 1 − OVL, where OVL is the overlap of the probability
density functions (PDFs) of the lesion and background regions. gCNR values approaching 1 have
overlap approaching 0, meaning the PDFs are completely separated. As the relative distribution
of these two PDFs is unchanged when the image undergoes a transformation, the gCNR cannot
be manipulated in the way that other metrics can, making it more robust. Though finding the true
PDFs of the two regions can be difficult, we have previously proposed robust methods for
estimating the gCNR even in extreme scenarios.14 (These methods are publicly available from
our GitHub repository https://github.com/VU-BEAM-Lab/gCNR_solver. Here, we will use the
“ecdf” implementation.)

As with SNR, gCNR can be used without a reference image. As gCNR is a measure of the
overlap of the two regions of data, it not only provides a measure of the likelihood of separating a
data point into one region or the other, but it can also be applied to any kind of data. However,
Smith et al.’s work demonstrates that clinical interpretation of detectability also depends on
lesion size and system resolution, which does not impact gCNR. This was observed in our prior
work, where as long as there are enough data sampled to accurately represent the population,
gCNR will converge on a fixed value.14 This means that gCNR and SNR must be measuring
different aspects of the image.

2.3 Generalized Signal-to-Noise Ratio
Smith et al. derived SNR with the statistics of speckle in mind: that image data are beamformed
with DAS and the envelope is Rayleigh distributed. However, in theory, it might be possible to
derive a version of SNR for other beamformers and therefore other distributions (Exponential,
Gaussian, etc.); in practice, it is unreasonable (and perhaps impossible) to re-derive the metric for
every possible situation. However, it is also understandable that SNR cannot simply be applied to
other beamforming methods either as these methods can manipulate both Cψ and the correlation
cell size without changing the underlying information. gCNR is robust to these manipulations but
lacks the explicit clinical meaning of SNR. As a result, our goal is to merge the clinical meaning
of SNR and the robustness of gCNR into a single metric we will call gSNR.

In Eq. (1), for SNR, Cψ is a contrast measurement ranging from 0 to 1 calculated on the
intensity data of an image.2 gCNR can also be considered a quantitative measure of contrast
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ranging from 0 to 1 and can be equally calculated on magnitude or intensity data (as intensity is
just a transformation of magnitude).5 Then, we define gSNR as

EQ-TARGET;temp:intralink-;e003;114;712gSNR ¼ fðgCNRÞ eM1=2N1=2; (3)

where f is a function fðgCNRÞ ¼ Cψ for the case of DAS data. Assuming such a function can be
found, this would allow us to estimate a gSNR value that is robust to transformations. However,

also note that we differentiate eM from the original to indicate the use of a more robust calculation
to estimate the value. These two components will be discussed in more detail in Secs. 2.3.1
and 2.3.2.

2.3.1 Analytic calculation of F

The well-understood nature of the DAS distribution makes it possible to calculate its behavior
analytically. Enveloped DAS data follow the Rayleigh distribution,12 which implies that the
intensity, the square of the enveloped data, follows the exponential distribution. Table 1 includes
several definitions from these distributions that will be used in this section. As these distributions
are related, this allows us to define them in relation to each other. Consider a lesion (L) and
background region (B) that are described by Rayleigh distributions with scale parameters σL
and σB, respectively. Then, the corresponding intensity data are governed by exponential dis-
tributions with rate parameters λL ¼ 1=ð2σ2LÞ and λB ¼ 1=ð2σ2BÞ, which come directly from the
definition of the distributions. Furthermore, the mean value (expected value) of an exponential
distribution is simply I ¼ E½X� ¼ 1=λ, which means that Eq. (2) for Cψ from earlier becomes

EQ-TARGET;temp:intralink-;e004;114;466Cψ ¼ IL − IB
ðI2L þ I2BÞ1=2

¼ 2σ2L − 2σ2B
ðð2σ2LÞ2 þð2σ2BÞ2Þ1=2

¼ σ2L − σ2B
ðσ4L þ σ4BÞ1=2

: (4)

Often, CR is defined as the log-compressed ratio of the mean values of two regions, but
functionally, it is simply the ratio of the means. For Rayleigh distributions, the ratio of the means
is simply the ratio of the scale parameters, and we can define CR ¼ μL=μB ¼
ðσL

ffiffiffiffiffiffiffiffi
π=2

p Þ=ðσB
ffiffiffiffiffiffiffiffi
π=2

p Þ ¼ σL=σB. As σL; σB; Cψ are all positive, real values [Eq. (4)] can be writ-
ten as

EQ-TARGET;temp:intralink-;e005;114;364CR2 ¼ σ2L
σ2B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

ψ − C4
ψ

q
− 1

C2
ψ − 1

; (5)

showing that we can relate CR and Cψ .
It is possible to find a similar equation for gCNR using the same Rayleigh distribution scale

parameters. A critical step to do this comes from the proof in our prior work and can be found in
its supplementary material.14 In theorem 1.4 of our prior work, we showed that gCNR can be
expressed as

EQ-TARGET;temp:intralink-;e006;114;257gCNR ¼
X

HMAX −
X

HMIN; (6)

where HMAX and HMIN are the local maximums and minimums of the function H ¼ F − G,
respectively. F and G are the cumulative distribution functions (CDFs) for any arbitrary sets
of data that gCNR is being calculated on. To simplify the proof, we previously defined the data
as scaled between 0 and 1, which we maintain here. In this case, we have Rayleigh distributions

Table 1 Definitions for distributions.

R∼ Rayleigh (σ) X∼ Exponential (λ)

Mean (μ) σ
ffiffiffiffiffiffiffiffi
π= 2

p
1= λ

PDF ðx= σ2Þ expð−x2= ð2σ2ÞÞ λ expð−λxÞ

CDF 1 − expð−x2= ð2σ2ÞÞ 1 − expð−λxÞ
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defined by σL and σB, and the equation for the CDF for a Rayleigh distribution can be substituted
in to find

EQ-TARGET;temp:intralink-;e007;117;712H ¼ CDFL − CDFB ¼ ð1 − eð−x2=ð2σ2LÞÞ − ð1 − eð−x2=ð2σ2BÞÞ ¼ eð−x2=ð2σ2BÞ − eð−x2=ð2σ2LÞ: (7)

Lemma 1.1 from our previous proof tells us that the local extrema of H are located at the
intersections of the corresponding PDFs. The original proof for Eq. (6) is applied to any arbitrary
distribution, but in the case of Rayleigh distributions, there are exactly three locations where the
PDFs intersect (assuming the distributions are not identical): x ¼ f0; x0; 1g. For any PDF,
PDFð0Þ ¼ 0 and PDFð1Þ ¼ 0 are clear, meaning that any two PDFs will intersect at those loca-
tions. As all Rayleigh distributions are defined by a single scale parameter, that leaves exactly
one other intersection x0 ∈ ð0;1Þ. Then, this intersection can simply be solved using the equa-
tions of the PDFs for Rayleigh distributions PDFLðx0Þ ¼ PDFBðx0Þ

EQ-TARGET;temp:intralink-;e008;117;590

x0
σ2L

e−x
2
0
=ð2σ2LÞ ¼ x0

σ2B
e−x

2
0
=ð2σ2BÞ; (8)

which can be solved for x0 as

EQ-TARGET;temp:intralink-;e009;117;544x20 ¼
4σ2Lσ

2
B lnðσ2B=σ2LÞ

2σ2B − 2σ2L
: (9)

As CDFLð0Þ ¼ CDFBð0Þ ¼ 0 and CDFLð1Þ ¼ CDFBð1Þ ¼ 1 by definition,
Hð0Þ ¼ Hð1Þ ¼ 0. Then, from the list of potential intersections of the PDFs, x ¼ f0; x0; 1g,
we only have one location that provides a non-zero value of H: x ¼ x0. So, Eq. (6) simplifies
as we only need to calculate the value of H at x0

EQ-TARGET;temp:intralink-;e010;117;457gCNR ¼
X

HMAX −
X

HMIN ¼ ½Hðx0Þ� − ½Hð0ÞþHð1Þ� ¼ Hðx0Þ
¼ eð−x20=ð2σ2BÞ − eð−x20=ð2σ2LÞ; (10)

which follows from Eq. (7). Then, we can substitute Eq. (9) where we solved for x20 into this
equation to get a function of gCNR in terms of the two Rayleigh parameters σL and σB

EQ-TARGET;temp:intralink-;e011;117;387gCNR ¼ e

�
−

�
1
4σ2Lσ

2
B lnðσ2B=σ2LÞ

2σ2B − 2σ2L

��.
ð2σ2BÞ

− e

�
−

�
1
4σ2Lσ

2
B lnðσ2B=σ2LÞ

2σ2B − 2σ2L

��.
ð2σ2LÞ

; (11)

which can be simplified into

EQ-TARGET;temp:intralink-;e012;117;333gCNR ¼ σ2B=σ
2
L − 1

ðσ2L=σ2BÞ1=ððσ2L=σ2BÞ−1Þ
¼ 1=CR2 − 1

ðCR2Þ1=ðCR2−1Þ : (12)

As Eq. (5) for Cψ and Eq. (12) for gCNR are both written in terms of CR2 ¼ σ2L=σ
2
B, one

final substitution gives

EQ-TARGET;temp:intralink-;e013;117;268gCNR ¼
C2
ψ−1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2C2
ψ−C4

ψ

p
−1

− 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2

ψ−C4
ψ

p
−1

C2
ψ−1

�
1

.� ffiffiffiffiffiffiffiffiffiffi
2C2ψ−C4ψ

p
−1

C2ψ−1
−1

� : (13)

This proves that for Rayleigh distributions, gCNR, Cψ , and CR all provide equivalent infor-
mation. In addition, we have an exact form for f−1, and we will later provide an empirical
approximation for f that is much more reasonable to use in practice. Figure 1 shows a quick
example of applying the three analytic equations to some simple simulated lesions to show agree-
ment with more practical data. It also shows some conclusions that can be drawn from these
equations to predict the minimum required Cψ or gCNR, based on the size (number of correlation
cells) of the lesion.
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2.3.2 Robust estimation of eM
Table 2 is a quick reference to all notations and abbreviations described in this section. The

notations with the tilde (e.g., eM) indicate the robust variations that can be used for gSNR.
A major component of SNR is accurately assessing the correlation cell size, Sc, as the num-

ber of independent correlation cells in the lesion directly follows:M ¼ S=Sc. The correlation cell
size is derived from the autocovariance of the speckle (which is related to autocorrelation), but
Wagner et al.12 demonstrated that the –6 dB resolution cell size is comparable to Sc, which can be
easily measured from the FWHM of the PSF and pulse length. For DAS, this can be estimated
from features of the imaging system as it is expected that the resolution is only dependent on the
imaging system itself. In this work, M (for calculating SNR) is estimated from the FWHM in
point target simulations (Mfwhm) and from the autocorrelation of the speckle for in vivo
cases (Mcorr).

However, the FWHM and autocorrelation function can be affected by transformations much
like CNR and SNR. To compensate for this effect, histogram matching11 can be used to match
other beamformers to DAS, functionally removing the effects of transformations. We found using
the “full” histogram matching method that using DAS as the reference image did well to elimi-
nate problematic transformations in most cases and produced similar lateral resolution measure-
ments compared with the other robust methods. However, we found it unreliable to apply to some
beamformers for measuring axial resolution, and it continues to be the case that determining the
optimal method of matching is challenging. Sparrow’s criterion (or resolution limit) is a measure
of resolution that is independent of transformations because it defines resolution as the distance

Table 2 Reference for notation and abbreviation for size and resolution methods.

Number of correlation cells and resolution methods

M notation Method abbreviation Description

MFWHM FWHM FWHM (standard for DAS data)

M̃FWHM;matched FWHMmatched FWHM histogram matched to DAS

Mcorr autocorr Autocorrelation (standard for DAS data)

M̃Sparrow Sparrow Sparrow’s criterion

M̃ info autoinfo Autoinformation length

M̃Sparrow;scaled Sparrowscaled Sparrow’s criterion scaled to DAS FWHM

M̃ info;scaled autoinfoscaled Autoinformation scaled to DAS FWHM

Fig. 1 Comparing the analytic relationship to simulated lesion results for converting among CR,
Cψ , and gCNR using Eqs. (5) and (12) (a) and Eq. (13) (b). The simulated lesions include varying
radii (2 to 5 mm) across a range of CRs, showing good agreement between the analytic equations
and the simulated results. Note that simulations were performed at amplitude increments of 5 dB,
which produces the gaps in the figure. (c) Using Eq. (1) and the Rose criterion threshold (3.54) to
predict the threshold values of Cψ and gCNR. For a given value ofM (the number of correlation or
resolution cells), having a measured Cψ or gCNR above the corresponding line indicates that the
lesion is above the Rose criterion.
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between two points when a minimum becomes detectable between them.15 Specifically, we mea-
sure this distance as when a minimum becomes visible between two points positioned at the same
depth. Finally, the autoinformation length is included as an information-based resolution metric,
being similar but more robust compared with autocorrelation and easier to apply than Sparrow’s
criterion.16 Histogram matching ( eMfwhm;matched), Sparrow’s criterion ( eMsparrow), and autoinforma-

tion length ( eMinfo) are included to find the most robust option. In all cases, we then estimated
Sc ≈ π × ðreslat=2Þ × ðresax=2Þ from the measured lateral and axial resolution.

The original works2,12 used the FWHM and autocorrelation for DAS to estimate the reso-
lution cell size, suggesting that these methods are correct for comparing against the Rose
criterion3 and the original contrast-detail phantom.1 However, Sparrow’s criterion and the auto-
information length generally predict smaller resolution cells, even for DAS. As a result, we cal-
culate a scalar for each that when applied matches the DAS resolution of each method to the
“true” value. This same scalar is applied to each beamformer, and for completeness, calculations
will be performed both without and with the scalar applied. Scaled measurements will be indi-
cated by “scaled” where appropriate (e.g. eMinfo;scaled).

3 Evaluation Methods
MATLAB (The MathWorks, Natick, Massachusetts, United States) was used for all simulations
and implementations.

3.1 Simulated Lesions and Point Targets
Field II17,18 was used for both lesion and point target simulations. In all cases, targets were simu-
lated at a depth of 30 mm at the focus. A linear array transducer was simulated with 117 active
elements with a pitch of 0.257 mm, transmitting at 3 MHz with a bandwidth of 60%.

Lesion simulations were generated with radii ranging from 1 to 5 mm with approximate
amplitudes ranging from –30 to 0 dB, and n ¼ 6 independent realizations of speckles were gen-
erated for each case. In these simulations, images were produced by acquiring 128 beams,
0.234 mm apart. This gives an expected resolution cell size of 0.133 mm2, and scatterers were
placed to achieve an average of 15 scatterers per cell. For all image quality metrics, the lesion
region L and background B were selected as the area of the lesion and a region of background,
respectively. The number of data points in region L therefore scales directly with the square of the
radius of the lesion. The regions chosen are shown later in Fig. 3. The region of interest (ROI) for
each of the 1, 2, 3, 4, and 5 mm radius lesions had areas of 2.92, 11.28, 25.76, 45.58, and
70.98 mm2. These are based on 80% of the true size of the simulated lesions as we wanted
to minimize the amount of sidelobe clutter present in the ROI and will be further explained
in Sec. 3.4. Background regions were chosen to include approximately the same number of data
points as the corresponding lesion.

Point target simulations were split into two categories: single-point targets for use with
measuring the FWHM of the PSF and double-point targets for use with measuring the resolution
limit using Sparrow’s criterion. In both cases, 31 beams were simulated, and points were posi-
tioned at the focal depth. For the single target cases, the point was located along the middle beam,
and the beams were positioned 0.0234 mm apart for higher accuracy measurements. For the
double target cases, beams were positioned such that the points were located along the first and
last beams, with 29 beams in between them, to make it easier to identify minimums in between
the two points. For these cases, lateral points were generated with separations ranging from 0.381
to 0.440 mm with increments of 0.001 mm, and axial points had separations ranging from 0.290
to 0.310 mm with increments of 0.001 mm. This allowed us to get an estimate of the resolution
limit on the order of 0.001 mm. To create additional realizations, n ¼ 6 independent white noise
realizations were generated and added to the point targets at SNRs of 60 dB. As the white noise
can create misleading minimums when measuring Sparrow’s criterion, these cases were fit using
the MATLAB fit function (The MathWorks, Inc.) and the “poly4” fit type.

3.2 In Vivo Cases
To demonstrate that gSNR can equally be applied to in vivo data, we captured in vivo liver data
using a Verasonics Vantage Ultrasound System (Verasonics, Inc., Kirkland, Washington, United
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States) with a C5-2 curvilinear transducer. A total of 128 angles uniformly spaced to span 75 deg
were acquired with a center frequency of 4.1667 MHz, focused at 6 cm. Six cases were acquired
from one patient for use in estimating the average spatial resolution, and one of those cases was
chosen for analysis.

For resolution, a patch of homogeneous speckle was chosen near the focus depth, and both
autocorrelation and the autoinformation length were used to estimate lateral and axial resolu-
tions. Again, it is assumed that the autocorrelation of the DAS case produces the closest value
to the truth,2,12 so a scalar is applied to the autoinformation lengths such that the DAS measure-
ments are consistent between the two methods. For the analysis case, three blood vessels of

varying sizes were chosen, and SNR using Mcorr and gSNR using eMinfo;scaled were calculated.

3.3 Beamformers and Post-Processing Methods
We include brief descriptions of image formation methods included in the analysis here but leave
the majority of the finer details to prior works for brevity. Throughout the rest of the work, these
methods will be referred to as “beamformers” rather than the more correct “beamformers and
post-processors” to improve flow and readability.

3.3.1 Delay-and-Sum

DAS was implemented without apodization.4 DAS also serves as the reference (ref) for all histo-
gram-matching applications.

3.3.2 Generalized coherence factor

The generalized coherence factor (GCF) is a weighting of the DAS image designed to reduce
focusing errors caused by phase aberrations.19 A cutoff of M0 ¼ 5 was chosen as a reasonable
value for general imaging cases as we and others have used in prior works.10,14,20,21

3.3.3 Minimum variance

Minimum variance (MV) is a method for improving lateral resolution and was implemented
using the adaptations for ultrasound imaging.22,23 Subarray lengths, N, of 1=2 the aperture length

were used, and diagonal loading of ϵ ¼ Δ · trðR̂Þ, where Δ ¼ 1=ð10NÞ, was applied. trðR̂Þ is the
trace of the matrix.

3.3.4 Filtered delay multiply and sum

Filtered delay multiply and sum (F-DMAS) is an adaptive beamformer that combinatorially cou-
ples and multiplies the delayed channel data before summing across the channels.24 The direct
current (DC) and high-frequency components are removed using a band-pass filter centered
around 2fc, where fc is the center frequency.

3.3.5 Simple gray level transformations

We and other groups have previously used gray level transformations to demonstrate how
dynamic range transformations can manipulate many traditional image quality metrics.5,14,16

Specifically, we will define a simple transform on the enveloped DAS data, jSDASj

EQ-TARGET;temp:intralink-;e014;114;163DASnðjSDASjÞ ¼ jSDASjn; (14)

where n is any desired power. Here, the square root and square cases are considered, i.e.,
ffiffiffiffiffiffiffiffiffiffi
DAS

p
and DAS2. These transformations result in simple compression or stretching of the dynamic
range, but as stated earlier, these kinds of transformations do not alter the clinical value or the
information content of the images. As with the other methods included here, the resulting value is
log compressed with 20 � log10 when displayed.
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3.4 Choosing an Optimal ROI
When considering image quality metrics such as CNR or gCNR, the choice of the ROI for the
target and reference regions is critical, though often inadequately discussed. In simulations where
the true size of targets is known, it is possible to create an ROI that is exactly the size of the target.
However, off-axis clutter effects (and potentially others) mean that for some metrics, using the
true size for the ROI produces poorer metrics than if a slightly smaller ROI was used. Off-axis
clutter generally shrinks the apparent size of the lesion, worsens the average amplitude of the
lesion, and increases the variance within the true lesion ROI. Image quality metrics that depend
on amplitude and variance therefore are encouraged to choose a smaller radius compared with the
true radius to reduce the impact that these off-axis effects have. Consider Fig. 2, CR, gCNR, and
SNR are shown as a function of the percent of the ROI radius compared with the true radius for
anechoic lesions of varying radii. CR and gCNR depend mostly on amplitude and variance, so
there is a distinct moment where the ROI radius begins to include off-axis clutter and the per-
formance drops. In comparison, SNR depends on the size and therefore mostly continues to
improve as the ROI radius increases. As both gCNR and SNR are being considered here,
we will choose to use a universal 80% ROI radius compared with the true radius as it serves
to optimize both metrics simultaneously.

4 Results

4.1 Verifying the Analytic Solution gCNR = f−1(Cψ)
In Sec. 2.3.1, we demonstrated for Rayleigh distributed data how to analytically calculate the
relationship of gCNR ¼ f−1ðCψÞ with Eq. (13). Here, we present a more compact equation for
general use that uses a Gompertz fit function

EQ-TARGET;temp:intralink-;e015;117;453fðgCNRÞ ≈ −0.5506þ 1.627 expð− expð−3.181ðgCNR − 0.0247ÞÞÞ; (15)

where f was approximated from data generated from the analytic solution in Eq. (13). In Fig. 3,
this estimated fit of f is shown with both theoretical values for Rayleigh distributions [panel (a)]
and actual simulated ultrasound DAS data [panel (b)]. A Gompertz function was chosen for the
fit as it had the best balance of relatively few terms (low complexity) and high accuracy of the
estimate (maximum absolute error for any point was 0.00425). Figure 3 also shows this same line
plotted over simulated lesions ranging in amplitude from –30 to 0 dB and radii from 1 to 5 mm.
The line generally shows good agreement with the simulated DAS data; though as the simulated
lesions get smaller, the deviation is noticeable, which makes sense given that the smaller lesions
have fewer independent speckle regions (more sampling variability) and more potential sidelobe
clutter.

4.2 Resolution and Number of Independent Samples
For completeness, M, the number of independent correlation cells in the lesion ROI, and eM, the
robust variant, were calculated for each beamformer using all of the methods described earlier
(refer to Table 2). The standard method from Wagner et al.12 is to use MFWHM, which uses the

Fig. 2 Example of how choosing the radius of the ROI for an anechoic lesion impacts resulting
(a) CR, (b) gCNR, and (c) SNR. Lesions of varying radii (1 to 5 mm) are shown, chosen ROI radius
is displayed as a percent of the true radius. Both CR and gCNR are affected by off-axis clutter,
which results in decreased performance as the ROI radius approaches the true radius of the lesion.
However, SNR is related to the size of the ROI and so continues to increase as the ROI radius
increases. An ROI radius of 80% is chosen for later analysis as it produces the best balance
between optimizing both contrast-like and size-dependent metrics. The curve for the 1 mm lesions
shows how off-axis clutter can complicate analysis in smaller ROIs.
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FWHM of the lateral PSF and the pulse length. As with Cψ , this measurement has been dem-
onstrated to work for DAS data but is unlikely to be an accurate measure for other beamformers.
To test this, histogram matching was applied to all cases to match them to the DAS data. These
methods are denoted by “FWHM” and “FWHMmatched,” respectively. Sparrow’s criterion
(“Sparrow”) and the autoinformation length (“autoinfo”) were also used as alternative measures.
Finally, scaled versions of Sparrow’s criterion (“Sparrowscaled”) and the autoinformation length
(“autoinfoscaled”) were included as well. A summary of all of these methods applied to lateral
resolution is included in Fig. 4(a). Figure 4(b) shows a comparison of FWHM, FWHMmatched,

Fig. 4 (a) Measured lateral resolution for all beamformers and post-processors using the FWHM of
the lateral PSF, FWHM after matching to DAS, Sparrow’s criterion for the resolution limit, and the
lateral autoinformation length. In addition, Sparrow’s criterion and the autoinformation length are
shown scaled to match the DAS FWHM resolution value. Both Sparrow’s criterion and the auto-
information show similar relative performance between the beamformers, whereas the FWHM
shows more variability. Note that F-DMAS has functionally infinite lateral resolution using
Sparrow’s criterion as a minimum can always be detected given sufficient lateral sampling. As
a result, the Sparrow F-DMAS results cannot be shown. (b) The PSF for DAS, MV, and MV histo-
gram matched to DAS, plotted alongside the autoinformation curves for DAS and MV. The sug-
gested threshold for resolution is marked at the −6 dB line for the PSF and at 0.1 for the normalized
autoinformation amplitude. (c) Examples for measuring the lateral resolution with Sparrow’s cri-
terion for DAS and MV. The value of Δx indicates the separation of the point targets, and the
separation when a minimum becomes detectable is considered the resolution limit. The axis units
are arbitrary as only the presence of a minimum is being measured. A small horizontal dotted black
line is included to help show the minimum.

Fig. 3 (a) Analytic relationship between gCNR and Cψ . The black line is generated from Eqs. (5)
and (12) for a variety of CRs, the yellow line is Eq. (13) for f −1 for Cψ values between 0 and 1, and
the blue line shows the approximation of f included in the figure. (b) Comparing the approximation
of f against simulated lesions of varying amplitudes and radii. These simulations show good agree-
ment with the predicted function though for the smallest lesions (r ¼ 1 mm), the approximation is
weaker as the lesions have higher sampling variability. (c) An example of –30 dB amplitude simu-
lated lesions with radii from 1 to 5 mm. The regions used for image quality metrics are shown in
white and are based on 80% of the true lesion radius.
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Table 3 Measured axial resolution (mm).

DAS
ffiffiffiffiffiffiffiffiffiffi
DAS

p
DAS2 GCF MV F-DMAS

FWHM 0.385 0.558 0.289 0.385 0.385 0.462

FWHMmatched 0.385 0.385 0.385 0.533 0.558 0.424

Sparrow’s criterion 0.300 0.306 0.306 0.301 0.302 0.290

Autoinformation length 0.221 0.221 0.221 0.205 0.184 0.241

Sparrow’s criterion “scaled” 0.385 0.393 0.392 0.386 0.388 0.372

Autoinformation length “scaled” 0.385 0.385 0.385 0.357 0.320 0.418

Fig. 5 Summary of results for –4 dB lesions, with true radius r ¼ 2 mm, ROI radius at 80% of the
true radius, and standard deviations shown where applicable. (a) The number of resolution cells
was estimated using the FWHM of the PSF, FWHM after matching to DAS, Sparrow’s criterion, the
autoinformation length, and both Sparrow’s criterion and the autoinformation length scaled to
match the DAS FWHM resolution values. (b) A comparison of Cψ , gCNR, and f(gCNR) is shown
to demonstrate the effect of using f(gCNR) versus Cψ . (c) SNR and (d) gSNR calculated with the
different resolution cell estimates as indicated. The dashed line at 3.54 is the Rose criterion refer-
ence. As mentioned earlier, F-DMAS results that rely on Sparrow’s criterion cannot be shown.
(e) b-mode examples of one realization of the −4 dB r ¼ 2 mm lesions that is representative
of the average results. (f) The corresponding histogram plots of the lesion and reference areas
used to calculate gCNR for the b-mode cases shown. The y -axis is scaled in these plots based
on the number of pixels in each area, to correctly show the relative overlap between the two
histograms.
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and the autoinformation length for DAS and MV. Finally, Fig. 4(c) shows an example of evalu-
ating Sparrow’s criterion. F-DMAS unfortunately cannot be effectively measured using
Sparrow’s criterion because as long as there was a beam in between the two simulated point
targets (which there was by design), a minimum could be detected, making it impossible to mea-
sure the “true” resolution. As a result, F-DMAS results that rely on Sparrow’s criterion are not
shown in any figures.

Table 3 shows the measured axial resolution for all cases using the same resolution methods.
The resolution cell size was then measured as the ellipse formed by the average lateral resolution
and the average axial resolution. Figure 5(a) then shows the estimated number of resolution cells
in the r ¼ 2 mm radius lesions, which is calculated from the size of the lesion (based on 80% of
the true lesion radius) divided by the resolution cell size.

4.3 gSNR of Simulated Lesions
As N, the number of independently compounded images, is simply 1 for all cases here, we can
now calculate SNR and gSNR for all of our cases in various combinations using Eqs. (1) and (3).

Figure 5(a) shows the measured values for a number of resolution cells (M and eM), and Fig. 5(b)
shows Cψ , gCNR, and f(gCNR), specifically for the r ¼ 2 mm radius and –4 dB amplitude
simulated lesions. r ¼ 2 mm was chosen as the smallest size that seemed to accurately follow
the analytic relationship between Cψ and gCNR (from Fig. 3), and −4 dB was the lowest ampli-
tude that was still somewhat visible in b-mode images and close to the Rose criterion threshold
SNR of 3.54. The summary of SNR and gSNR for these cases for each resolution method is
shown in Figs. 5(c) and 5(d). In particular, SNR measurements always use Cψ , and gSNR always
use fðgCNRÞ, but multiple versions of each calculation are shown using different methods for
estimating the number of resolution cells, as indicated. B-mode images of one case that followed
the average trends are shown in Fig. 5(e) for the distinct beamformers, and the corresponding
histograms that reflect the overlap for gCNR are shown in Fig. 5(f).

Fig. 6 b-Mode images of in vivo liver case with vessel ROIs shown with dashed white lines and the
corresponding reference backgrounds shown with solid white lines. The same ROI is used for each
beamformer case. (a) DAS, (b) GCF, and (c) F-DMAS are included.
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4.4 gSNR of In Vivo Liver Case
An in vivo liver case with several differently sized vessels is shown in Fig. 6 for DAS, GCF, and
F-DMAS. The specific measurements for SNR and gSNR for each of the three vessels are
included in Table 4 for those beamformers along with the transformation DAS2. V1, V2, and
V3 denote the vessels in descending size. FWHM and Sparrow’s criterion were not used in these
cases as each requires specific phantoms to measure, which may not always be available. In
comparison, both autocorrelation (Mcorr) and autoinformation (Minfo) only require some rela-
tively homogeneous speckle to estimate. For reference, the middle-sized vessel (V2) is around
the same size (number of resolution cells) as the r ¼ 2 mm–simulated lesion shown in Fig. 5.
The Rose criterion threshold of 3.54 still applies to these data.

5 Discussion
Perhaps one of the most interesting results of this work is the demonstration that for Rayleigh
distributed data, i.e., DAS data, gCNR, and Cψ are functions of one another. In fact, as both
metrics are calculated directly from the scale parameters of the Rayleigh distributions, both val-
ues are functions of CR as well. This does not diminish the value of these metrics. gCNR was
designed with non-Rayleigh distributed data in mind precisely because non-Rayleigh data
behave so unpredictably with traditional image quality metrics like Cψ . The inclusion of the
gray level transform methods demonstrates this clearly in Fig. 5, where arbitrarily squaring the
enveloped data results in significant improvements to both Cψ and lateral resolution as measured
with the FWHM of the PSF, which in turn increases SNR. As squaring the data does not improve
diagnostic information (which we can see by simply re-scaling the dynamic range of these
images), these are clearly erroneous results and are a consequence of the non-Rayleigh distrib-
uted data. With this in mind, one of the primary criteria for this work was creating a version of
SNR that correctly judges these transform methods as equivalent to DAS.

We defined a generalized version of Smith et al.’s SNR,2 with Eq. (3), using an analytically
solved conversion between Cψ and gCNR using Eqs. (13) and (15). Though the analytic equation

Table 4 In vivo measurements of SNR and gSNR.

V1 Cψ Mcorr SNR gCNR M̃auto gSNR

DAS 0.996 328.9 18.1 0.800 328.9 17.2

DAS2 1.000 388.1 19.7 0.807 319.8 17.0

GCF 1.000 277.6 16.7 0.723 258.1 14.7

F-DMAS 0.998 511.6 22.6 0.763 460.5 20.0

V2 Cψ Mcorr SNR gCNR M̃auto gSNR

DAS 0.975 87.8 9.3 0.733 87.8 8.6

DAS2 1.000 103.6 10.2 0.738 85.4 8.5

GCF 0.996 74.1 8.6 0.723 68.9 7.6

F-DMAS 0.988 136.6 11.7 0.683 123.0 9.9

V3 Cψ Mcorr SNR gCNR M̃auto gSNR

DAS 0.926 13.7 3.7 0.678 13.7 3.3

DAS2 0.996 16.1 4.0 0.684 13.3 3.2

GCF 0.986 11.5 3.4 0.680 10.7 2.9

F-DMAS 0.959 21.2 4.6 0.748 19.1 4.0
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is unwieldy to apply, Fig. 3 shows a more simple fitted equation that had a maximum absolute
error of 0.00425 from the true theoretical value, which is well within the expected variance of a
gCNR estimate from previous work.14 The same figure showed this approximation plotted
against simulated DAS data, which generally agreed with the expected values. This demonstrates
that our analytic solution is correct and that we can substitute Cψ ≈ fðgCNRÞ for an immediate
increase in robustness to SNR.

The predicted Cψ for a measured gCNR in Fig. 3 does deviate somewhat for the smallest
simulated lesions (r ¼ 1 mm) and to a lesser extent lesions where the measured gCNR is low.
This is unsurprising for several reasons. First, smaller lesions are more proportionally impacted
by off-axis clutter, making them deviate from Rayleigh distributions. Second, smaller sample
sizes generally are less likely to accurately represent the population from which they are drawn,
which leads to a positive bias compared with the true gCNR value. Finally, low values of gCNR,
where the two regions have very similar true distributions, also tend to produce a positive bias, as
seen in the figure. As the size of the lesion increases, these effects are diminished, and the esti-
mator converges on the true gCNR. We observed similar things in our previous work, where the
smaller lesions frequently produced “incorrect” gCNR estimates compared with the true values
used to generate the data.14 However, this is an issue for many image metrics, and CNR and Cψ

likewise generate “incorrect” estimates for 1 mm lesions compared with the larger lesions that
generally are more consistent. We have shown through the results that gSNR is a functional
equivalent to SNR for DAS in small and low-contrast lesions, showing that gSNR is working
as intended in these scenarios. However, these observations do suggest that both SNR and gSNR
may overestimate the likelihood of detection in cases with low contrasts or small sample sizes.
While important to keep in mind, the nuances of this bias are outside the scope of this work and
likely have a minor impact in most situations.

We demonstrated three different ways of estimating the number of resolution cells in the

lesion: MFWHM using the more common FWHM of the lateral PSF, eMSparrow using Sparrow’s
criterion, and eMinfo using the autoinformation length. Sparrow’s criterion is naturally robust
against transformations as a local peak in between two points cannot be induced or removed
simply via transformations, and likewise, autoinformation is inherently information-based.
However, the FWHM, as a measure of autocorrelation, is susceptible to transformations, so
to remedy this, we applied histogram matching with DAS as the reference envelope for every
case. This effectively removes any transformations in the data and produces a similar relative
measure between beamformers similar to the two more robust methods. This is apparent from

Fig. 4, where eMFWHM;matched is more consistent with the eMSparrow and eMinfo methods. In com-
parison, the FWHM on the raw data would suggest that several beamformers, including DAS2,
are significant improvements compared with DAS, and at least in the case ofDAS2, this is clearly

false. The eMSparrow and eMinfo methods produce similar results; however, for DAS, both methods
tend to overestimate size than when using MFWHM. As it is assumed that MFWHM is an accurate
measure of the number of resolution cells from the work of Wagner et al.,12 a scalar was calcu-

lated to scale eMSparrow and eMinfo such that the measured size of DAS was the same as MFWHM.
This scaled measurement is likely to be more accurate in the context of measuring the resolution
cell size.

A lingering concern is whether resolution cell size can be used as an approximation of cor-
relation cell size in non-Rayleigh situations. Although we use resolution cell size to calculate
SNR, technically, it is only a substitution for correlation cell size, and it happens to have been
shown that the two are equivalent for Rayleigh distributed data. For the other non-DAS cases
here, we have assumed that resolution cell size is more robust compared with correlation cell size
for arbitrary distributions. Fig. 4(a) shows that both Sparrow’s criterion and autoinformation
length predict similar relative performance between methods, and as autoinformation is similar
to a robust autocorrelation measurement,16 this might indicate that the resolution cell size here is
a better fit for our work. We know that DAS has a directly related resolution cell and correlation
cell size, so Sparrow’s criterion should be a good approximation for DAS for correlation cell size.
The histogram matched FWHM, scaled Sparrow’s criterion, and scaled autoinformation all mea-
sure similar relative performance among the methods. This in turn might imply that they are
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similarly good approximations of the correlation cell for those other methods. This suggests that
a robust resolution cell estimate is likely still a good approximation for use in SNR and gSNR.

The final results in Figs. 5(c) and 5(d) suggest that regardless of SNR or gSNR, larger lesions
and higher amplitude lesions will likely be well above the Rose criterion threshold of 3.54
because a radius of 2 mm and an amplitude of –4 dB are already at or above the threshold.
The gSNR values calculated with eMFWHM;matched, eMSparrow;scaled, and eMinfo;scaled are consistent
and subjectively seem in line with expectations given the b-mode examples in Fig. 5(e).
gSNR suggests that GCF and MV actually produce less identifiable lesions than DAS in this
case, despite the traditional SNR with MFWHM showing improvements. Likewise, all three cor-
rectly determine that the gray level transform methods are just transformations of DAS. The in
vivo example in Fig. 6 further confirms these observations and demonstrates that gSNR can
translate into in vivo applications without issue. In this example, F-DMAS is consistently an
improvement compared with DAS due to improved resolution, despite relatively similar Cψ and
gCNR measures. Furthermore, all vessels have much higher Cψ and gCNR than the simulated
lesions, resulting in consistently higher SNR and gSNR measures at similar sizes.

An important goal was to relate gSNR back to the subjective measurements that SNR was
based on, and the fact that gSNR and SNR are the same for DAS is good evidence that it does.
Likewise, Cψ and f(gCNR) being nearly identical for DAS are further support. This suggests that
for DAS, gSNR can relate back to those subjective assessments the same as SNR, which should
be the case as the conversion between the two metrics was mathematically proven. Although the
resolution cell assessment of M is generally applicable to other beamformers, the function f to
relate Cψ and gCNR was specifically solved for Rayleigh distributions. Yet, it is likely impos-
sible to analytically solve for a similar function for any arbitrary distribution. However, gCNR
does provide a non-parametric comparison between any arbitrary distributions and is able to
compare relative performance between methods in a robust manner. If an arbitrary beamformer
has the same resolution cell size and gCNR as DAS, it seems like a reasonable assumption that
both methods would have similar detectability and therefore similar gSNR. From this perspec-
tive, using the same f for all beamformers to relate gCNR back to the original SNR and Rose
criterion scale makes sense.

It is difficult to be sure of exactly what the Rose criterion threshold for SNR should be, but
the generally recommended value of 3.54 does provide a decent guideline for when gSNR mea-
surements begin to reliably indicate the presence of a lesion. However, even without assessing the
lesion detection problem, the measurements between beamformers also provide a more accurate
sense of the relative performance of adaptive beamformers, compared with using other traditional
metrics. gSNR provides a good balance of being non-parametric and therefore robust against
transformations while still being linked to earlier works that were designed around subjective
clinical assessments, which are critical for researchers and industry professionals. This suggests
that gSNR should correlate with overall image quality while also being more broadly applicable
to adaptive beamformers.

From the data presented, gSNR likely does have limitations beyond which it (and SNR) will
struggle. Specifically, sampling theory indicates that these methods will be less accurate and
overall more variable for smaller lesions, and there is no obvious solution to correct this.
This high variance is a greater challenge for targets at low contrasts due to the increasingly asym-
metrical nature of the distribution of the metric as contrast lowers. Separately, all of the metrics
considered here operate on the enveloped data and therefore can only predict the quality of the
enveloped data. Enveloping data results in a loss of information, and image quality metrics
designed to work with the pre-enveloped data would provide a deeper look into beamformer
performance. However, given the heavy assumptions in the derivations of both SNR and
gSNR on the nature of the enveloped data, it is difficult to predict how or even if gSNR could
be translated to work in that domain.

6 Conclusions
In this work, gSNR, a robust version of Smith et al.’s SNR,2 is proposed. We demonstrate that it is
possible to find an analytic relationship between Cψ and gCNR for Rayleigh distributed data,
from which we find an empirical estimate of the function fðgCNRÞ ¼ Cψ , allowing the use of
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gCNR instead of Cψ . We additionally show multiple methods for calculating the resolution cell
area in a more robust manner. Using gCNR and a robust resolution cell estimate to calculate
gSNR provides a more consistent estimate of lesion detectability across beamformers. The
gSNR metric applied to DAS data shows similar results to SNR as intended but has the benefit
of being more robust for other adaptive beamformers such as GCF, MV, and F-DMAS, as shown
here. gSNR is demonstrated to work with in vivo data as well without any additional consid-
erations, as long as the resolution can be robustly measured.
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