
RESEARCH PAPER

Impact of retraining and data partitions on
the generalizability of a deep learning model in

the task of COVID-19 classification on
chest radiographs

Mena Shenouda , Heather M. Whitney , Maryellen L. Giger , and
Samuel G. Armato III *

The University of Chicago, Committee on Medical Physics, Department of Radiology, Chicago, Illinois,
United States

ABSTRACT. Purpose: This study aimed to investigate the impact of different model retraining
schemes and data partitioning on model performance in the task of COVID-19 classi-
fication on standard chest radiographs (CXRs), in the context of model generalizability.

Approach: Two datasets from the same institution were used: Set A (9860 patients,
collected from 02/20/2020 to 02/03/2021) and Set B (5893 patients, collected from
03/15/2020 to 01/01/2022). An original deep learning (DL) model trained and tested
in the task of COVID-19 classification using the initial partition of Set A achieved
an area under the curve (AUC) value of 0.76, whereas Set B yielded a significantly
lower value of 0.67. To explore this discrepancy, four separate strategies were
undertaken on the original model: (1) retrain using Set B, (2) fine-tune using Set
B, (3) L2 regularization, and (4) repartition of the training set from Set A 200 times
and report AUC values.

Results: The model achieved the following AUC values (95% confidence interval)
for the four methods: (1) 0.61 [0.56, 0.66]; (2) 0.70 [0.66, 0.73], both on Set B;
(3) 0.76 [0.72, 0.79] on the initial test partition of Set A and 0.68 [0.66, 0.70] on
Set B; and (4) 0.71� 0.013 on repartitions of Set A. The lowest AUC value
(0.66 [0.62, 0.69]) of the Set A repartitions was no longer significantly different from
the initial 0.67 achieved on Set B.

Conclusions: Different data repartitions of the same dataset used to train a DL
model demonstrated significantly different performance values that helped explain
the discrepancy between Set A and Set B and further demonstrated the limitations of
model generalizability.
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1 Introduction
In the early stages of the coronavirus disease 2019 (COVID-19) pandemic, deep learning (DL)
algorithms emerged as potential tools for rapid diagnosis of the virus based on the chest
radiographs (CXRs) of patients. As the deployment of these algorithms progressed, however,
it became evident that their performance was not always consistent, and challenges arose in
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ensuring their reliability in clinical settings; in other words, the models were not generalizable.
For example, some models were trained on CXRs of pediatric patients but were then applied to
an adult population, which resulted in models predicting whether the patient was a child, not
COVID-19 status.1 Similarly, a model trained on images of patients lying down and standing up
was able to identify the status of patient positions, instead of disease status, with the intuitive
notion that patients lying down were more likely to be ill.2 Further, most models struggled with
robustness and generalizability, as there was poor truth labeling that sometimes relied on sub-
jective assessments by physicians rather than more objective metrics such as reverse transcription
polymerase chain reaction (RT-PCR) tests.1 Data collection was also a hindrance, as some avail-
able public datasets amalgamated data from various sources that may have included duplicate
images, resulting in some CXRs being used in both the training and test sets, which yielded
overly optimistic results.1,2 In all, a majority of models assessed early in the pandemic were not
ready for clinical deployment, as there were inherent biases present.1,3

There were early efforts to combat data biases and lack of model generalizability. For
example, to structure data curation, the Medical Imaging and Data Resource Center (MIDRC)
was created with the aim “to foster machine learning innovation through data sharing for rapid
and flexible collection, analysis, and dissemination of imaging and associated clinical data by
providing researchers with unparalleled resources in the fight against COVID-19.”4 Further,
MIDRC conducted a grand challenge to assess performance and generalizability of DL models
in the task of distinguishing between COVID-19 positive/negative CXRs.5 Thus, the present
study was motivated by continued scientific interest in model generalizability.6–10

Previous studies on model generalizability have quantified the impact of model deployment
on out-of-distribution data in medical and non-medical environments.9,10 For example, Yang
et al.6 studied models trained on electronic health record data across multiple clinical sites
and concluded that models customized to a clinical site improved performance. However,
McDermott et al.7 found that machine learning applied to healthcare tasks had poor reproduc-
ibility metrics (e.g., code and dataset accessibility). Further, Maleki et al.8 explored three
common methodological pitfalls that reduce model generalizability. None of these studies, how-
ever, compared model performance and generalizability on imaging data within the same insti-
tution, nor provide an explanation for the appreciable decrease in model performance observed in
the current work. The potential for bias even across datasets from the same institution is often
overlooked.

A DenseNet-121 DL model previously published by Hu et al.11 (the “original model”)
obtained an area under the receiver operating characteristic curve (ROC AUC) value of 0.76
in the task of COVID-19 classification; the same model achieved a significantly lower AUC
value of 0.67 when applied to an independent test set from the same institution.12 This study,
therefore, aimed to provide an interpretation for the outputs of the DLmodel in question, address-
ing the discrepancies between these two datasets by examining data partitioning, model archi-
tecture, and training, in an effort to understand the lack of model generalizability.

2 Methods

2.1 Datasets

2.1.1 Set A

Set A included 9860 patients retrospectively collected from the University of Chicago Medicine
under a Health Insurance Portability and Accountability Act (HIPAA)-compliant, Institutional
Review Board (IRB)-approved protocol. The dataset was initially partitioned into 64% for train-
ing, 16% for validation, and 20% for testing using stratified sampling to maintain a consistent
COVID-19 prevalence of 15.5% across the subsets. This training and validation set will be
termed Set Atr, and the test set will be termed Set Ate. Only the first CXR image acquired within
2 days of a patient’s initial RT-PCR test for the SARS-CoV-2 virus was used. CXRs were
acquired between January 30, 2020, and February 3, 2021, using standard images from stationary
dual-energy subtraction radiography units and portable radiography units. For further details on
this dataset, refer to Hu et al.11
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2.1.2 Set B

CXR exams collected from 5893 patients constituted Set B and had been acquired between
March 15, 2020, and January 1, 2022, under the same HIPAA-compliant, IRB-approved pro-
tocol. Within this cohort, 731 patients (12.4%) had tested positive, whereas 5162 patients
(87.6%) had tested negative for the SARS-CoV-2 virus, as determined by RT-PCR tests. Patient
images from both Set A (the initial set used to develop and evaluate the published model) and
Set B (the newer set used to evaluate the published model) were obtained from the same insti-
tution and underwent identical image preprocessing. Although there was an overlap in image
acquisition dates between Sets A and B due to the inherent patient curation process at the
University of Chicago Medicine, there was no overlap in patients, and the two datasets were
completely independent, as determined by the patient medical record numbers. The curation
process for Set B paralleled that of Set A to mitigate the impact of potential confounding var-
iables. For further details on this dataset, refer to Shenouda et al.12 Table 1 provides an overview
of the two datasets.

2.2 Image Preprocessing
Digital Imaging and Communications in Medicine (DICOM) images of the CXR exams were
normalized on the range [0, 255] and stored as Portable Network Graphics (PNG) images.
Subsequently, an open-source U-Net-based model13 was used to segment the smallest rectangular
region containing the lungs on the PNG images from both Set A and Set B. The segmentation
model weights were computed using a pre-pandemic public CXR dataset14 and fine-tuned on
another dataset featuring COVID-19 radiographs.11,15 Cropping was performed as it was shown
to be effective for the original model11 and to maintain a consistent methodology.

2.3 Model Training Scheme
The current study is based on a model described by Hu et al.,11 which used a single, distinct
partition of Set A: Set Atr for the training and validation sets and Set Ate for the test set. The model
employed a DenseNet-121 architecture,16 chosen for its previous success in diagnosing pneumo-
nia and other pathologies on CXRs.17,18 In addition, it adopted a curriculum (transfer) learning
approach,19 increasing the focus of the classification task towards COVID-19 in the final phase.
The curriculum comprised three phases: (1) fine-tune the model pre-trained on ImageNet on the
National Institutes of Health (NIH) ChestX-ray14 dataset,20,21 (2) refine on images from a pneu-
monia detection challenge,22 and (3) further fine-tune using the initial partition of Set A split into
Set Atr and Set Ate.

11

2.4 Analyses and Comparisons
Using Set Atr to train and validate, the original model yielded an AUC value of 0.76 [0.73, 0.79]
(2000 bootstrapped samples to construct the 95% confidence intervals) on Set Ate in the task of
distinguishing COVID+/- patients from their cropped standard CXRs. Using the same pre-trained
model, Set B yielded an AUC value of 0.67 [0.65, 0.70] (also calculated from 2000 bootstrapped
samples), which was significantly lower than the results of Set A (p < 0.001) as determined by
the DeLong test comparing the uncorrelated ROC curves (Fig. 1).23 To investigate the decrease in
model performance from Set A to Set B, the present study investigated different model retraining
strategies, an ablation technique, data partitioning (stratified sampling was used to maintain
a consistent COVID-19 prevalence across all partitions), and model deployment on a grand
challenge to assess model performance.

Table 1 Number of patients and COVID prevalence for Set A and Set B.

Number of patients COVID prevalence (%)

Set Atr 7888 15.4

Set Ate 1972 15.5

Set B 5893 12.4

Shenouda et al.: Impact of retraining and data partitions on the generalizability. . .
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The first investigation, Experiment I, used Set B to retrain the model to calculate new phase 3
weights by employing the same split ratios as Set A: Set B was split into 64% training (3771
patients), 16% validation (943 patients), and 20% testing (1179 patients), using the cropped stan-
dard CXRs and maintaining the COVID prevalence at 12.4% across partitions. The combination
of the Set B training and validation partitions will be termed Set Btr;I , and the Set B test set will be
termed Set Bte;I .

The second investigation, Experiment II, independently fine-tuned the model after the origi-
nal phase 3 was conducted. Specifically, Set B was used to fine-tune the model after the original
phase 3 weights by splitting the set into 40% training (2356), 10% validation (590 patients), and
50% testing (2947 patients). The combination of the Set B training and validation partitions will
be termed Set Btr;II , and the Set B test set will be termed Set Bte;II .

An ablation study, Experiment III, was also performed by altering the architecture of the
original model for phase 3. Specifically, an L2 regularizer (with an L2 regularization penalty of
0.0005)24 was added to help mitigate overfitting, constraining the complexity of the model by
minimizing the values the learned weights can take during phase 3. This was performed using
the initial partition of Set A (Set Atr and Set Ate).

For Experiment IV, the phase 3 weights were recalculated for each of the 200 repartitions
(determined empirically to calculate the two-sided 95% confidence interval) of Set Atr, and each
of the resulting 200 models was evaluated on Set Ate and Set B to quantify the impact of data
partitioning on performance. Specifically, the training and validation sets that comprise Set Atr

were separately resampled with replacement 200 times. These 200 partitions will be termed Set
Atr;IV (i.e., 200 instantiations of Set Atr;IV were generated).

Fig. 1 Comparisons performed between the initial partition of Set A and Set B. The AUC value
refers to the test set of Set A, Set Ate. The asterisk denotes the statistically significant difference
between Set Ate and Set B. The green and orange boxes indicate results on Set Ate and Set B,
respectively.
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Comparisons of model performance between Sets A and B were performed for standard
CXRs when considering the four experiments: (1) recalculating the phase 3 weights using
Set Btr;I , (2) fine-tuning the phase 3 weights using Set Btr;II , (3) implementing the L2 regularizer
on the original model and retraining the phase 3 weights, and (4) repartitioning Set Atr 200 times
and recalculating the phase 3 weights, thereby evaluating whether the initial Set A results on
Set Ate were due to an initial chance favorable partitioning. Table 2 and Fig. 2 summarize the
methods and comparisons performed.

3 Results

3.1 Experiment I: Recalculating Phase 3 Weights
After splitting Set B into a 64% training set, 16% validation set, and 20% test set while main-
taining the COVID prevalence, the phase 3 weights were recalculated on Set Btr;I and a new AUC
value of 0.61 [0.56, 0.66] was obtained on Set Bte;I in the task of distinguishing COVID+/- when
evaluating the cropped standard CXRs. This value is a significant decrease from 0.67 [0.65, 0.70]
(p ¼ 0.029), which was obtained when applying the original model to the entirety of Set B.
Further, this value was significantly lower than the initial Set Ate AUC value of 0.76 [0.73,
0.79] (p < 0.001); though, Set Btr;I resulted in fewer images used for training (N ¼ 4714)

Table 2 Summary of the datasets used and comparisons performed.

Experiment Strategy or application Training set Comparison

I Recalculating phase 3 weights Set Btr;I (N ¼ 4714) Set Ate (N ¼ 1972) and
Set Bte;I (N ¼ 1179)

II Fine-tuning phase 3 weights Set Btr;II (N ¼ 2946) Set Ate (N ¼ 1972) and
Set Bte;II (N ¼ 2947)

III L2 regularization applied during phase 3 Set Atr (N ¼ 7888) Set Ate (N ¼ 1972) and
Set B (N ¼ 5893)

IV 200 repartitions and
recalculating phase 3 weights

Set Atr;IV (N ¼ 7888) Set Ate (N ¼ 1972) and
Set B (N ¼ 5893)

Fig. 2 Summary of the four experiments conducted in this study.
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when compared with Set Atr (N ¼ 7888), which could explain the substantial decrease in the
AUC values after recalculating the phase 3 weights using Set B.

3.2 Experiment II: Fine-tuning Phase 3 Weights
After fine-tuning the phase 3 weights by splitting the cropped standard CXR images of Set B into
40% training, 10% validation, and 50% testing while maintaining COVID prevalence, the AUC
value calculated using Set Bte;II slightly improved to 0.70 [0.66, 0.73] but was not significantly
different from Set B without fine-tuning the phase 3 weights (AUC = 0.67, p ¼ 0.27). However,
the 0.70 value was still significantly different from Set Ate (AUC = 0.76, p ¼ 0.007). A summary
of the previous two comparisons is presented in Fig. 3.

3.3 Experiment III: L2 Regularization
Regularization did not mitigate model overfitting as the AUC values obtained with the regular-
ized model failed to achieve a significantly higher AUC value than the corresponding AUC
values prior to regularization for both Set Ate (0.76 [0.72, 0.79]) and Set B (0.68 [0.66, 0.70]).

3.4 Experiment IV: Recalculating Phase 3 Weights after Repartitioning
Retraining the model with the Set Atr;IV repartitions using the cropped standard CXR images
resulted in an average AUC value of 0.71� 0.013 on Set Ate and an average AUC value of
0.66� 0.009 on Set B. There was a Gaussian-like distribution of AUC values for Set B (skew
of –0.14) but a slight left-tailed distribution (skew of –0.46) for Set Ate, as shown in Fig. 4. There
was also a significantly larger variance of AUC values for Set Ate than for Set B (F-test,
p < 0.01), demonstrating the larger impact different training partitions had on Set Ate than Set B.

Fig. 3 Summary of the results when recalculating (left) and fine-tuning (right) the phase 3 weights of
the model. AUC values calculated in the task of distinguishing COVID+/- CXRs were significantly
lower when comparing the partitioned Set B (Set Bte;I and Set Bte;II ) results with Set Ate, denoted by
the asterisks. Green and orange boxes indicate results on Set A and Set B, respectively.

Fig. 4 Distributions of the AUC values obtained when repartitioning Set Atr;IV 200 times and evalu-
ating it on the test set of Set A, Set Ate, and the entirety of Set B.

Shenouda et al.: Impact of retraining and data partitions on the generalizability. . .

Journal of Medical Imaging 064503-6 Nov∕Dec 2024 • Vol. 11(6)



The lowest AUC value achieved on Set Ate during the 200 partitions was 0.66 [0.62, 0.69].
Interestingly, the initial AUC value of Set B (0.67 [0.65, 0.70]) was no longer significantly less
than the AUC value obtained with this repartition of Set Atr;IV (p ¼ 0.46). Further, this lowest
AUC value was significantly less than the initial Set Ate AUC value of 0.76 [0.73, 0.79]
(p < 0.001). The highest value achieved on Set Ate during the repartitions was 0.73 [0.70,
0.76], lower than the initial AUC value of 0.76, but this difference just failed to achieve statistical
significance (p ¼ 0.069).

The lowest AUC value achieved on Set Ate from the aforementioned Set Atr;IV repartition
(0.66 [0.62, 0.69]) was compared with its corresponding Set B AUC value (0.64 [0.62, 0.66]) on
the exact same repartition and failed to achieve a significant difference (p ¼ 0.43). However,
the highest AUC value achieved on Set Ate from the repartitions (0.73 [0.70, 0.76]) was signifi-
cantly different from its corresponding Set B AUC value (0.65 [0.63, 0.68]) (p < 0.001).

Distributions of AUC values resulting from the 200 partitions are displayed in Fig. 4, and a
summary of the previous two analyses is presented in Fig. 5. There was a significant difference
between the distributions of AUC values of Set Ate and Set B (Wilcoxon rank-sum test,
p < 0.001). A summary of the results from all the experiments is presented in Table 3.

4 Discussion
The motivation for this study was to examine the potential reasons behind the significant
decrease in model performance between the initially partitioned Set A and Set B, which were
both acquired at the same institution. Prior work discussed in Shenouda et al.12 extensively inves-
tigated this discrepancy in the performance of the model between the test sets as it explored the
impact of age and sex, immunization status, COVID severity, type of imaging equipment, and
date matching of image acquisition. None of these investigations, however, was able to explain
the drop in performance. Assessment of artificial intelligence (AI) model performance on

Fig. 5 Summary of the results when implementing L2 regularization (left) and repartitioning Set Atr

200 times (right). The AUC value of Set B was significantly lower than Set Ate for the L2 regulari-
zation, denoted by the asterisk. The distributions of the Set Ate AUC values and Set B AUC values
obtained using the repartitioned Set Atr;IV achieved a significant difference, denoted by the aster-
isk. Green and orange boxes indicate results on Set A and Set B, respectively.

Table 3 Summary of the main strategies or applications and their corresponding AUC values.

Experiment Strategy or application AUC values

I Recalculating phase 3 weights Set Bte;I : 0.61 [0.56, 0.66]

II Fine-tuning phase 3 weights Set Bte;II : 0.70 [0.66, 0.73]

III L2 regularization applied during phase 3 Set Ate: 0.76 [0.72, 0.79]

Set B: 0.68 [0.66, 0.70]

IV 200 repartitions and recalculating phase 3 weights Mean of Set Ate: 0.71 [0.70, 0.73]

Mean of Set B: 0.66 [0.65, 0.67]
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datasets acquired from the same institution provides a unique perspective on model generaliz-
ability. Therefore, this current work examined the impact of data partitioning and model retrain-
ing on performance and model generalizability.

Recalculating the phase 3 weights using Set Btr;I in Experiment I failed to improve perfor-
mance of the model, perhaps due to the smaller number of cases on which the model trained
compared with Set Atr, i.e., the original model trained on 6310 patients from Set A, whereas the
recalculated phase 3 weights were trained on 3771 patients from Set B. Fine-tuning in
Experiment II was performed to incorporate images from Set B in the training scheme (Set
Btr;II) in an attempt to improve model generalizability. Fine-tuning slightly improved the
AUC value from 0.67 on Set B to 0.70 on Set Bte;II for the cropped standard CXRs, but that
value remained significantly lower than that of the initial Set Ate AUC value (0.76). The archi-
tecture of the model itself was altered in Experiment III in an attempt to create a more general-
izable model. Specifically, L2 regularization was implemented to control for overfitting,25

although the regularization had a negligible impact on the performance of the model.
AUC values for Set Ate had a larger span (range: 0.66 to 0.73) than those of Set B (range:

0.63 to 0.68) when repartitioning Set Atr 200 times during Experiment IV. Significant differences
were achieved when comparing the highest AUC value calculated on Set Ate with its correspond-
ing AUC value on Set B. Further, the highest Set Ate AUC value (0.73) failed to achieve a sig-
nificant difference from the initial 0.76 AUC value, although it was lower. When analyzing the
lowest AUC values, the difference between Set Ate and its corresponding Set B failed to achieve a
significant difference. Differences between the lowest AUC value of Set Ate and the initial 0.67
AUC value of Set B also failed to achieve a significant difference. In other words, these values
demonstrate that different partitions of the same dataset will yield significantly different results,
returning variable performance. Therefore, although none of the patient demographics and clini-
cal factors of the former study in Shenouda et al.12 could explain the decreased performance of
the original model, the repartitioned results here indicate that a favorable, random partition may
have been the reason for the discrepancy in performance. This work also emphasizes the “black
box” nature of DL, as no discernible, real-world characteristic could explain the discrepancy of
the model outputs. Instead, multiple repartitionings of the dataset demonstrated the large range of
AUC values calculated, and consequently, the breadth of model performance and lack of general-
izability. In addition, these results suggest that DL studies should report on model performance
across multiple repartitions of the data, as that would provide a more reliable assessment of the
model. Overall, the novelty of this work is its exhaustive and in-depth analysis investigating
different training strategies to explain the decreased model performance when evaluating datasets
that were acquired from the same institution.

Future work will explore further the creation of a generalizable model. This will include
various regularization and augmentation methods. For example, test-time augmentation
(TTA) could be employed by creating multiple augmented versions of the images in the test
set. The model then makes predictions on each of these augmented versions, returning an ensem-
ble of predictions, which can then be averaged. Specifically, test entropy minimization can be
used to perform the TTA, as the minimization has been shown to reduce generalization error for
image classification on corrupted ImageNet, ImageNet-C, and CIFAR-10/100 datasets.26 In addi-
tion, analyses in finding an optimal ratio of the data split into training, validation, and test sets
will be conducted. Multiple studies27–30 have recommended a variety of splits, ranging from a
25% to a 50% split in creating the test set. Therefore, an optimal ratio will be explored to ensure
the model is not overfit, which may result in improved generalizability. Lastly, an analysis of
patient-based performance will be conducted. For instance, subset analyses (i.e., age or sex) can
be performed on Set Ate, and the classifier outputs, which varied with the different training
repartitions, can be studied using a metric such as sureness introduced by Whitney et al.31 that
evaluates the repeatability of the outputs. The metric can be used across different categories and
across the two test sets, Set Ate and Set B.

5 Conclusion
This study examined a model trained to classify COVID-19 status based on patient CXRs and
investigated the discrepancy in performance when the model was applied to two separate datasets
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acquired from the same institution, Set A and Set B. The model yielded significantly different
AUC values between the initial test set Set Ate (0.76) and newer Set B (0.67). Methods and
modifications of model architecture, model retraining, and model fine-tuning were all performed
in an attempt to explain the lower AUC value. The exploration of data partitioning was able to
provide an explanation for the decreased performance between the datasets, as it underscored the
variability introduced by different partitions.

As DL algorithms become more widespread in healthcare tasks, it is imperative that AI
scientists understand and interpret the outputs of these models to explain and mitigate potential
inconsistencies in model performance. Overall, this work contributes to the methods of explain-
able AI, as it attempts to interpret the results of the DL algorithm used to classify COVID-19
status. These findings emphasize the need for continued research in improving model training,
fine-tuning, and augmentation to address model generalizability before deployment in the clinic.
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