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Abstract

Purpose: The goal of this research is to develop innovative methods of acquiring simultaneous
multidimensional molecular images of several different physiological random processes (PRPs)
that might all be active in a particular disease such as COVID-19.

Approach: Our study is part of an ongoing effort at the University of Arizona to derive bio-
logically accurate yet mathematically tractable models of the objects of interest in molecular
imaging and of the images they produce. In both cases, the models are fully stochastic, in the
sense that they provide ways to estimate any estimable property of the object or image. The
mathematical tool we use for images is the characteristic function, which can be calculated if
the multivariate probability density function for the image data is known. For objects, which are
functions of continuous variables rather than discrete pixels or voxels, the characteristic function
becomes infinite dimensional, and we refer to it as the characteristic functional.

Results: Several innovative mathematical results are derived, in particular for simultaneous
imaging of multiple PRPs. Then the application of these methods to cancers that disrupt the
mammalian target of rapamycin signaling pathway and to COVID-19 are discussed qualitatively.
One reason for choosing these two problems is that they both involve lipid rafts.

Conclusions:We found that it was necessary to employ a new algorithm for energy estimation to
do simultaneous single-photon emission computerized tomography imaging of a large number of
different tracers. With this caveat, however, we expect to be able to acquire and analyze an
unprecedented amount of molecular imaging data for an individual COVID patient.
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1 Introduction

This paper concerns new methods of image acquisition and analysis that can contribute to clini-
cal patient management and scientific investigations for various diseases. The mathematical
underpinnings of the methods have been developed in many papers and illustrated by simulation
studies of various molecular imaging modalities, but there is a need for implementations that can
be used with real patient data and real clinical objectives.

We have chosen to illustrate these details by considering two quite different disease types:
cancers that involve mutations on the mammalian target of rapamycin (mTOR) pathway, and
coronovirus infections (specifically COVID-19). The former has the advantage that the biophys-
ics of disease progression is well understood, while the latter will highlight some of the uncer-
tainties in the biophysics and how they can be resolved.
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Throughout this paper, it will be assumed that the object being imaged is also the source of
the radiation that forms the image. We also assume that the imaging systems are tomographic,
meaning that they acquire information about the 3D structure of the object. Thus, we are in the
realm of emission computed tomography (ECT), which includes positron emission tomography
(PET), single-photon emission computed tomography (SPECT), various forms of optical fluo-
rescent imaging, and the new modalities of charged-particle emission computed tomography
(CPET) for alpha and beta particles.1 We do not consider computed tomography, magnetic res-
onance imaging, or indirect optical methods such as fluorescence lifetime imaging.

The main mathematical tools to be utilized are characteristic functionals and characteristic
functions, to be defined in the next section; these tools lead to rigorous mathematical and
statistical descriptions for physiological objects and their molecular images.

2 Statistical Concepts and Notation

2.1 Digital Images

A digital image, virtually by definition, is a finite set of numbers; were this not the case, the
image could not be stored and processed in a computer or displayed on a monitor. In tomo-
graphic imaging, it is common to associate a volume element (voxel) with every point in the
digital image. In mathematical terms, the digital image is a vector in an M-dimensional vector
space, whereM is the number of voxels available to describe the image. Equivalently, the image
can be treated as an ðM × 1Þ column vector, denoted g. We can define the characteristic function
of g as

EQ-TARGET;temp:intralink-;e001;116;453ψgðξÞ ¼ hexpð−2πiξ†gÞi; (1)

where the angle brackets denote a statistical average, and the superscript † denotes an adjoint
(complex-conjugate transpose); thus, ξ† is a 1 ×M row vector, so ξ†g is a scalar product. It is
worth noting that ψgðξÞ is a scalar, but it depends on the vector ξ, which can be chosen at will.

A simple interpretation of ψgðξÞ is that it is the M-dimensional Fourier transform of the
probability density function of the M-dimensional random vector g.

2.2 Objects: Physiological Random Processes

Physiology is the study of life. Thus molecular imaging of living beings should provide
information about physiological processes. Moreover, very little about life is predictable.
Etymologically, the opposite of predictable is stochastic, or random, so the objects being imaged
in living beings are physiological random processes (PRPs). Objects are functions of continuous
variables, and images are sets of numbers. Technically, objects are vectors in an infinite-
dimensional Hilbert space, and images are vectors in a finite-dimensional Euclidean space.

The simplest form of characteristic functional2 of a PRP is [cf. Eq. (1)]

EQ-TARGET;temp:intralink-;e002;116;240ΨfðΦÞ ¼ hexp½−2πiðΦ; fÞ�i; (2)

where f is a shorthand for a function of three spatial variables, f ¼ fðrÞ, and r ¼ ðx; y; zÞ.
Likewise, Φ is also a function of three spatial variables, hence, a function in the same vector
space as f, and the scalar product is defined as

EQ-TARGET;temp:intralink-;e003;116;173ðΦ; fÞ ¼
Z
V
d3rΦ�ðrÞfðrÞ; (3)

where V is the volume of integration, asterisk denotes a complex conjugate, and d3r ¼ dxdydz.

Barrett and Caucci: Stochastic models for objects and images in oncology and virology. . .

Journal of Medical Imaging S16001-2 Vol. 8(S1)



2.3 From Objects to Images

It is often very easy to compute the characteristic function for an image if the characteristic
functional of the object is known. As an example, consider a continuous-to-discrete linear
operator H. In the absence of excess detector noise, the imaging equation is g ¼ Hf. If we
let ξ ¼ HΦ in Eq. (1), we have

EQ-TARGET;temp:intralink-;e004;116;668ψgðξÞ ¼ ΨfðH†ξÞ: (4)

Thus, a simple change of variables in the argument converts Ψf to ψg, thereby converting
a characteristic functional to a characteristic function. The operator H† is referred to as back-
projection in the tomography literature.

2.4 Multiple PRPs

In many situations, it is useful to consider simultaneous ECT imaging of multiple, interacting
PRPs. Much of the current research in molecular imaging revolves around the search for imaging
biomarkers, defined loosely as a way to make a PRP apparent in a medical image. Intuitively,
multiple biomarkers will be better than one, and a group of biomarkers will be more valuable still
if there is a convincing theory that ties them together (see, for example, Henscheid et al.3).

As an example of a biological system with multiple PRPs where the characteristic functional
can be expressed fairly succinctly, consider the basic problem of chemotherapy.3,4 Here, the drug
is usually administered intravenously, and it is transported into the tumor vasculature where it
encounters a dense and complicated network of capillaries. Many papers in the systems-biology
literature attempt to construct models of the capillaries, but the outcomes are seldom realistic,
and virtually never do they capture the intricacies of the vasculature for a particular patient.

Minimally, at least three PRPs are needed to describe the drug distribution in the context of
chemotherapy: the concentration of drug in the capillaries as a function of space and time;
the vascular permeability as a function of position in the tumor, and the process where a drug
molecule emerges from a capillary, diffuses to a tumor cell, and binds to it.

If we let f1 represent the drug concentration, f2 the vascular permeability and f3 the drug
diffusion in the interstitium, respectively, then the form of the characteristic functional is

EQ-TARGET;temp:intralink-;e005;116;356ΨFðΦÞ ¼ hhhexp−2πi½ðΦ1; f1Þ þ ðΦ2; f2Þ þ ðΦ3; f3Þ�if1jf2;f3if2jf3if3 ; (5)

where F is the concatenation of the three terms and the subscripts on the angle brackets denote
conditional averages; for example, h · · · if1jf2;f3 denotes an average over f1 with f2 and f3 held
constant. It is worth noting that the order of averaging follows the physical flow of the therapy
drug. In other words, there is no feedback in Eq. (5). In Sec. 3, we examine a pathway where
feedback plays a critical role.

2.5 Systems Biology

Systems biology is a popular field of current research that often appears as a submission category
in scientific meetings or biology journals. The mathematical models customarily used in systems
biology can be (a) sets of coupled ordinary differential equations (ODEs); (b) sets of coupled
partial differential equations (PDEs); (c) Boolean operators as in computer science, or (d) com-
binations of these objects. A recent review article that illustrates some of these choices in the
context of the mTOR pathway is by Sulaimanov et al.5

If ODEs are used, the variable of interest is almost always time, and we are in the realm of
compartmental modeling. The use of both spatial and temporal variables, hence PDEs, is more
realistic, but requires vastly more unknown parameters.

One fairly obvious way to study PRPs in a laboratory or clinic is to use monoclonal anti-
bodies designed to bind to particular biomolecules of interest. These antibodies can be used with
either fluorescent labels and optical imaging or with radioactive labels and SPECT imaging.
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Laboratory studies with real tracers and imaging systems produce far richer data than those
available from a systems-biology simulation, especially with multiple PRPs. A single simulation
run requires choosing mathematical forms for each PRP as a function or space and/or time, and
the whole process must be repeated many times with different assumed forms for each PRP to
learn anything about uncertainties in the systems-biology results. From a single real measure-
ment of the characteristic functional, on the other hand, one can compute all means and variances
and any other desired statistical properties of the real tracer distributions.

3 Signaling Pathways

3.1 Structure of an Example Pathway

The pathway of interest here is phosphoinositide-3-kinase (PI3K)/Akt/mTOR, where mTOR
stands for mechanistic (or mammalian) TOR.

Rapamycin was isolated in 1972 from bacteria found on Rapa Nui (Easter Island). It was
initially developed as an antifungal agent. Rapamycin was soon found to inhibit mTOR, which
makes it a potent immunosuppressive and antiproliferative agent. It is used widely to prevent
rejection in organ transplantation. Deregulation of its signaling pathways is associated with
numerous diseases affecting large populations, including obesity, diabetes, and cancer. The path-
way considered here is now regarded as a nearly universal physiological regulator.

A rigorous mathematical model of the PI3K/Akt/mTOR signaling pathway would be invalu-
able in patient-specific therapy of many cancers. The first step, PI3K, is mediated by a cell-
surface receptor called phosphatidylinositol triple kinase. (A kinase is an enzyme that mediates
phosphorylation of a biomolecule, a key step in many biological reactions.)

Akt is also known as protein kinase B, and its activity is controlled by a phosphatase-and-
tensin homolog called PTEN. (a phosphatase is the opposite of a kinase; it removes a phosphate
rather than adding one).
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Fig. 1 Diagram of the mTOR pathway. The double line at the top of the diagram represents the
plasma membrane, and the single green lines are feedback paths. See text for explanation.
Reproduced in modified form from Sulaimanov et al.5 under the terms of Creative Commons
Attribution-NonCommercial 4.0 International Public License (available at Ref. 6). Original creators
of the figure and copyright holders: Nurgazy Sulaimanov, Martin Klose, Hauke Busch, andMelanie
Boerries.5
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Further, along in the pathway is a complex of two kinds of mTOR, one of which controls the
synthesis of proteins through ribosomal proteins such as S6K. (Ribosomes are molecular
machines that translate messenger ribonucleic acid (mRNA) to proteins, and they are themselves
partly constructed of proteins.) Other functions of the PI3K/Akt/mTOR pathway include control
of apoptosis (programmed cell death) and repair of deoxyribose nucleic acid (DNA) damage. To
illustrate the complexity of this system, there can be as many as 10 million ribosomes in a single
mammalian cell, and there are approximately a billion cells in a one-gram tumor (Fig. 1).

3.2 Lipid Rafts, Pathway Activation, and Phosphorylation Waves

A signaling pathway is said to be activated if it is capable of running continuously without
external controls. The PI3K-Akt-mTOR pathway is activated by double phosphorylation of
Akt with two different kinases, mTORC2 and PDK1. These actions occur in lipid rafts, which
are microdomains in the plasma membrane delineated by regions high in cholesterol and sphin-
golipids. For more details see Gao et al.7

Compartmentalization into microdomains is essential for activation of Akt by PDK1 and
mTORC2 (two phosphorylation events). One effect of membrane localization is an increase
in concentration of signaling proteins, which leads to a rapid switch-like response.

Moreover, the inhibitory signaling protein PTEN is localized outside the membrane rafts and
cannot interfere with the activation. Gao et al.7 used genetic engineering to modify the lipids in
the raft so that PTEN was no longer excluded; they found that when PTEN could enter the rafts,
it “abolished the activity of the whole pathway.” See Gao et al.7 again.

Following the double phosphorylation, the activated Akt escapes from the lipid raft with the
help of PIP3 and then migrates to ribosomes in the cytoplasm and nucleus. One might expect this
migration to be diffusive, but Markevich et al. have shown that the activated Akt molecules
actually propagate as phosphorylation waves. These waves are created by the feedback paths
shown in the figure above. Markevich et al.8 have shown that the positive feedback leads to
bistability, with the two states being Akt singly phosphorylated and doubly phosphorylated.
The resulting pair of coupled waves then propagate with little attenuation or scattering, greatly
enhancing their efficiency in passing their activation on to ribosomes.

It would appear to be straightforward to construct a characteristic functional incorporating all
aspects of this pathway. Such a theory would take advantage of the fact that the initiating events,
Akt activations, are statistically independent since they take place in isolated lipid rafts, one
activation at a time. That means that the whole set of activated Akts is well described as a sample
function of a Poisson random process, with a well-known characteristic functional.9

4 COVID-19 Disease

4.1 Introduction

In essence, a virus is a segment of genetic material inside a protein shell. A virus is not a living
being, rather a parasite that replicates within a host cell. The particular virus discussed here is an
RNA virus called Severe Acute Respiratory Syndrome–CoronaVirus-2 (SARS-CoV-2). The
associated disease, called COVID-19, was discovered in December 2019, in Wuhan, China.

By early February 2020, remarkably detailed papers by Chinese scientists had been pub-
lished (online or in print) in world-renowned scientific journals (Nature, The Lancet, and
NEJM),10–12 barely six weeks after the first cases in Wuhan. It was apparent that the new disease
was closely related to SARS and Middle East respiratory symdrome (MERS), hence also a
corona virus. By this same time frame, Chinese scientists had determined and published the
full genome of the virus, and the World Health Organization (WHO) had declared a pandemic.

4.2 Mechanisms of Viral Infection

The early Chinese papers established that the probable entry routes by which a novel coronavirus
could infect a cell were essentially the same as for SARS and MERS. In a 2012 review of SARS
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and MERS, Belouzard et al.13 focused on the role of the viral spike protein (S) in mediating cell
entry. The process starts with conformational changes of the S protein triggered by receptor
binding, pH changes, or other stimuli.

For pulmonary infections, the relevant receptors are the angiotensin converting enzyme 2
(ACE2) and the angiotensin receptor (AR). Each of these is associated with a common class
of drugs for hypertension: ACE inhibitors (ACEI) and AR blockers (ARB). Another molecule
that is important to the entry process is transmembrane protease serine 2 or TMPRSS2.

As an aside, some early investigators suggested using ACEIs and ARBs in conjunction with
other COVID-19 therapy, but there was always some concern about interfering with normal
respiratory function. A few recent clinical trials have shown, however, that there may be some
benefit in continuing with hypertension drugs during any therapy on hypertensives.

Returning to mechanisms of coronavirus infection, it is not completely clear what happens
after a virus enters a cell at an ACE2 or AR site. Wang et al.14 show fairly convincingly that entry
is facilitated by high levels of cholesterol, which they presume to be stored in lipid rafts in the
plasma membrane. These lipid rafts, however, do not have the same physical structure as the
ones we discussed in Sec. 3.2 in the context of the mTOR pathway. The latter is anchored by
transmembrane receptors, and they are delineated by high levels of cholesterol and sphingolipids
that serve the important function of keeping the inhibitory protein PTEN out of the raft. The rafts
of interest for COVID-19 are not so sharply delineated; they can migrate laterally on the mem-
brane and merge to form larger rafts. On the other hand, they can serve as cholesterol reposi-
tories, thereby accounting for the increased susceptivity to COVID-19 for older patients.

4.3 Inflammation, Cytokine Storm

There is considerable discussion online about how to define disease mortality, but an intuitive
practical definition is number of deaths divided by the number of confirmed cases; by this token
the mortality of COVID-19 in the US is about 5%. This number is substantially higher for elderly
patients or those with comorbidities, and it is much less for children.

For all ages, it appears that a large fraction of the deaths is the result of cytokine storms,
or colloquially, the immune system run amok.

A cytokine is a signaling molecule that initiates the movement of other molecules. The cyto-
kines known to be relevant to COVID-19 include several interleukins, vascular endothelial
growth factor A, tumor necrosis factor, and monocyte chemoattractant protein 1 (MCP1).
For many more details, see Nile et al.15

Of these cytokines, perhaps the easiest to understand is MCP1, also known as C-C motif
ligand 2. A monocyte is a leukocyte (white blood cell), but a primitive one very early in its
development. An inflamed tissue can send out MCP1 and receive a cloud of monocytes in return;
the monocytes then differentiate into tissue-resident macrophages, which can engulf inflamed
cells. One way this process can stop is by further differentiation to foam cells, but little is known
about the efficiency of this step. If the process does not stop, a cytokine storm ensues.

Within the context of this paper, molecular imaging might be a good tool for early detection
of cytokine storms.

4.4 Vaccines and Therapeutics

Anything approaching a comprehensive discussion of the worldwide search for COVID-19 vac-
cines or therapeutics is far beyond the scope of this paper, but a readable and informative survey
is given by Timmer.16 The Timmer paper might profitably be read following the present paper.

4.5 Role of Characteristic Functionals

So far we have treated characteristic functionals mainly as tools for estimating stochastic proper-
ties of PRPs, but they can also play a role in hypothesis testing. Suppose, for example, we use K
radioactive tracers with different energies to study K PRPs. The vector Φ then signifies K sep-
arate functions of three spatial dimensions, one for each energy. If K is large, we will need an
imaging gamma-ray detector with excellent energy resolution to acquire K separate SPECT
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images. It would not suffice to have a narrow photopeak; we also have to suppress spurious peaks
arising from escape of fluorescent X rays or Compton-scattered photons.

A general method for suppressing these spurious peaks is based on the maximum-likelihood
expectation-maximization algorithm as applied to energy spectra.17 With this tool and any rea-
sonably good SPECT system, we can use the vector Φ to scan the reconstructed images for
missing peaks or unexpected peaks that could represent potential therapeutic targets for that
specific patient. This procedure can be viewed as testing the dual hypothesis that all relevant
proteins have been included in the mathematical model and none have been missed.

5 Example of Application of Characteristic Functionals to COVID-19

There are many possible applications in COVID-19 virology to which we could apply ECT and
characteristic functionals. For each, we would have to define an important biological or clinical
question; choose a relevant ECT imaging modality and associated tracers, and design a data-
acquisition strategy. The example provided in this section was inspired by the recent discovery of
a new mutated strain of COVID-19 that is 5 to 10 times more infectious than the original strain
from Wuhan, yet paradoxically no more lethal.

In a comprehensive worldwide epidemiological study, Korber et al.18 established the nature
of this mutation, which turns out to be a change in a single amino acid at one particular location
in the genome of the spike protein. According to Korber et al.,18 when the SARS-COV-2 virus
emerged in Europe in January 2020, almost 100% of clinical samples in the study coded for
aspartic acid (symbol D) in position 614 in the spike protein. By May 2020, the virus had
mutated, at least in Europe, so that the same location now coded for glycine (symbol G) in almost
100% of cases. This transition, denoted Spike D614G, results in a 5-10-fold increase in
infectivity.

To see why this seemingly minor genetic modification causes such a major change in viral
function, we note that glycine is the only achiral amino acid, which in simple terms means that it
can be superimposed on its mirror image by rotations and translations. All other amino acids
have complex sidechains that prohibit this superposition; in glycine, the sidechain is just a hydro-
gen atom. Glycine does not exhibit optical activity and it is neither left-handed nor right-handed.
In proteins and other large biomolecules, glycine permits sharp turns in the folded chains
(Fig. 2).

Though the D614G mutation described above accounts for the increased infectivity, it does
not explain the apparent absence of increased clinical lethality. For this purpose, we need math-
ematical models of viral cell entry akin to those used by Henscheid et al.3 for oncology. Several
models of infection and cell entry have appeared in the literature; each is characterized by a small
number of proteins. These proteins can be made visible to a fluorescence imaging system by
labeling them with fluorescent peptides, with different fluorescence spectra for different proteins.

Fig. 2 Spike proteins on COVID-19 bind to receptors on human cells, helping the virus to enter.
A spike protein is made up of three smaller peptides in “open” or “closed” orientations; when more
are open, it is easier for the protein to bind. The D614G mutation seems to relax connections
between peptides. Adapted from Ref. 19 with permission.
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One very attractive way to image the fluorescent signals is to use a scanning light-sheet (SLS)
imaging system like that depicted schematically in Fig. 3. High-end commercial SLS systems
have subcellular spatial resolution (≈400 nm), a field of view of about one cubic centimeter, and
excellent sensitivity to the fluorescent radiation. One drawback to SLS is that tissue scatters and
absorbs optical radiation, but there are many clearing agents available to render tissue
transparent.

In the standard operating mode of an SLS imaging system, the various proteins can be
depicted in a pseudocolor image, where different colors correspond to different peptides, hence
different proteins. The images are remarkable, but no information is obtained concerning the
spatial and temporal statistics of the corresponding PRPs. In particular, there is no information
about how different PRPs interact with each other, which is key to development of accurate
models of system involving several PRPs.

On the other hand, however, SLS imaging can provide a much richer data set than just snap-
shots. For one thing, it essentially avoids the seemingly insurmountable problem of getting a
large number of accurately labeled cases for clinical studies. The logical limit of this conundrum
is the challenge of doing trials with a single patient, that is, N ¼ 1.

The property of SLS systems that makes all of this possible is their space-bandwidth product,
loosely defined as the number of resolvable voxels in the whole data set. With the specifications
given above for high-end commercial SLS systems, this number turns out to be about 1013.
Of course, one cannot store data blocks this large, but it is possible to extract essential features
from the data on the fly and store them efficiently. For example, we can estimate the centroids of
virus particles and use them and associated peptide signals to determine how far along the virus
is in the process of binding to a host cell. These features can be used to calculate characteristic
functionals [see Eq. (5)].

6 Summary and Future Work

All disease processes are enormously complicated, involving many physiological processes, and
both patient-to-patient and cell-to-cell variability. We have argued in this paper that characteristic
functionals are a systematic tool for understanding interactions among PRPs, even those involv-
ing external therapeutic agents. Moreover, PRPs can virtually always be observed directly with
in vivo molecular imaging. These observations can then be connected to models describing the
interactions among random processes, thus potentially verifying the theories or leading to refine-
ments of them. Detailed validation is needed, but this formalism holds great promise as a tool for
biomedical research and clinical medicine.

An immediate challenge in this field is to develop efficient methods for estimating
patient-specific and disease-specific characteristic functionals for multiple PRPs. An important

Camera

Sample tis
sue

Incoming light

Fig. 3 Generic set up of light-sheet fluorescence microscopy. A thin plane of light (shown in red) is
created with a cylindrical lens. The plane of light is used to optically section a transparent sample
tissue (shown in green). Imaging is done perpendicularly to the direction of illumination.

Barrett and Caucci: Stochastic models for objects and images in oncology and virology. . .

Journal of Medical Imaging S16001-8 Vol. 8(S1)



extension of this study would be to set confidence intervals on estimated variances or other
uncertainty measures, taking into account both measurement errors and model inaccuracy.
The ultimate performance metric could be a therapy operating characteristic curve as introduced
in a previous paper in this paper.

For more details on characteristic functionals, see Foundations of Image Science9 or the
recent review by Clarkson and Barrett.20 An extensive treatment of PRPs and characteristic
functionals in precision cancer therapy is given by Henscheid et al.3
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