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Abstract

Purpose:We propose a super-resolution (SR) method, named SR-CycleGAN, for SR of clinical
computed tomography (CT) images to the micro-focus x-ray CT CT (μCT) level. Due to the
resolution limitations of clinical CT (about 500 × 500 × 500 μm3∕voxel), it is challenging to
obtain enough pathological information. On the other hand, μCT scanning allows the imaging
of lung specimens with significantly higher resolution (about 50 × 50 × 50 μm3∕voxel or
higher), which allows us to obtain and analyze detailed anatomical information. As a way to
obtain detailed information such as cancer invasion and bronchioles from preoperative clinical
CT images of lung cancer patients, the SR of clinical CT images to the μCT level is desired.

Approach: Typical SR methods require aligned pairs of low-resolution (LR) and high-resolution
images for training, but it is infeasible to obtain precisely aligned paired clinical CT and μCT
images. To solve this problem, we propose an unpaired SR approach that can perform SR on
clinical CT to the μCT level. We modify a conventional image-to-image translation network
named CycleGAN to an inter-modality translation network named SR-CycleGAN. The
modifications consist of three parts: (1) an innovative loss function named multi-modality
super-resolution loss, (2) optimized SR network structures for enlarging the input LR image
to 2k-times by width and height to obtain the SR output, and (3) sub-pixel shuffling layers for
reducing computing time.

Results: Experimental results demonstrated that our method successfully performed SR of lung
clinical CT images. SSIM and PSNR scores of our method were 0.54 and 17.71, higher than the
conventional CycleGAN’s scores of 0.05 and 13.64, respectively.

Conclusions: The proposed SR-CycleGAN is usable for the SR of a lung clinical CT into μCT
scale, while conventional CycleGAN output images with low qualitative and quantitative values.
More lung micro-anatomy information could be observed to aid diagnosis, such as the shape of
bronchioles walls.
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1 Introduction

Currently, lung cancer is the most common cancer among men,1 and the most common cause of
cancer death worldwide.2 In 2020, following the level of female breast cancer diagnoses, an
estimated 2.2 million cases of lung cancer were newly diagnosed (11.4% of total new cancer
cases). Lung cancer remains the leading cause of cancer death, with an estimated 1.8 million
deaths (18% of total cancer deaths).3 Most lung cancers are not found in their early stage, and
clinical computed tomography [clinical CT (we use the term “clinical CT image” for CT images
that are conventionally taken at hospitals. We use the term “CT volumes” for volumetric
images acquired by CT scanning, and we use the term “CT images” for two-dimensioanl
(2D) images cropped from CT volumes.)] by volumetric image scanning is offered to patients
considered to be at high risk of contracting the disease.4 Clinical CT of lung cancer patients is
also used for planning surgery, radiotherapy, and chemotherapy.5 Clinical CT of lung cancer
patients provides more detailed images than chest x-rays and is better at finding small abnormal
areas in the lungs.6 However, the resolution of clinical CT is still not high enough to observe
some micro anatomical structures. We cannot observe enough pathological informations, such as
the invasion of cancer, and thin bronchioles, from clinical CT due to its limited resolution (about
500 × 500 × 500 μm3∕voxel).7 To acquire more detailed pathological information for preopera-
tive diagnosis, it is important to enhance the resolution of clinical CT images.

Micro-focus x-ray CT (μCT) is another CT modality, and it can take images of a much higher
resolution than those by CT. Although μCT cannot scan living human bodies,8 it can scan small
targets, e.g., a surgically dissected human lung, the entire body of a mouse, or a rabbit heart.
Isotropic resolution of μCT volumes is typically 50 × 50 × 50 μm3∕voxel or higher. μCT vol-
umes obtained by μCT scanning of resected lung cancer specimens can capture their detailed and
surrounding anatomical structures.9 A comparison of clinical CT images with μCT images is
shown in Fig. 1. We can clearly observe tumor’s outline and bronchus from μCT, while tumor
outline and the bronchus are jagged in clinical CT.

If we could enhance the resolution of lung cancer patients’ clinical CT images, we would
be able to observe detailed anatomical structures, such as thin bronchioles, and then use the
resolution-enhanced clinical CT to guide surgeries and treatment plans for lung cancer.
Furthermore, a better resolution may substantially improve automatic detection and image
segmentation results.11 Super-resolution (SR) is a term for a set of methods of enhancing the
resolution of video or images.12 Our goal is to perform SR of the clinical CT images of lung
cancer patients.

Deep learning (DL)-based methods for medical image analysis have become active in recent
years.13 DL-based methods have achieved state-of-the-art (SOTA) accuracy14–18 over traditional
methods in segmentation. DL-based methods also achieved SOTA in medical image
denoising.19,20 Following this trend, we also use DL-based methods for performing SR in this
paper.

Previous SR methods based on DL21–25 commonly needed aligned pairs of low-resolution
(LR) and high-resolution (HR) images to train a fully convolutional network26 for SR. Dong
et al.21 proposed a deep neural network-based SR method for single-image SR. Ledig et al.22

proposed a generative adversarial network (GAN) for photorealistic SR. Lim et al.23 proposed
an enhanced deep residual network27 for SR. Haris et al.24 proposed a network that exploits
iterative up- and down-sampling layers for SR. Wang et al.25 proposed a dual-stream network
for SR. There are also several approaches to the SR of CT images.28–30 Yu et al.28 proposed
a single-slice and multi-slice SR method for CT images. Georgescu et al.30 proposed a two-
stage network for the SR of CT and MRI images. However, a common disadvantage of the
above methods21–25,28–30 is that they require paired LR-HR images for training. LR images are
acquired by downsampling the HR images using interpolation algorithms such as bicubic
interpolation.31

It is difficult to perform the SR of lung clinical CT images using these previous methods.
Given a clinical CT image (regarded as LR image here) with a resolution of around
500 × 500 × 500 μm3∕voxel, we cannot acquire its corresponding HR image because it is dif-
ficult to scan a living human body at a higher resolution. On the other hand, we can obtain μCT
images having a micro-level resolution by scanning resected lung specimens. We can use μCT
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images of lung specimens to guide the SR of lung clinical CT images. Since lung clinical CT and
μCT are acquired from different imaging devices, image registration of lung clinical CTand μCT
images is needed to obtain paired LR (clinical CT)-HR (μCT) images of the lung. However,
registration between clinical CT and μCT is challenging because the shape and inflation status
of lung specimens in μCT images are very different from those of a living lung. Therefore, an
unsupervised method that does not require pairs of clinical CT and μCT images is desired.
However, there are very few unsupervised SR methods that do not require paired LR and
HR images. Yuan et al.32 proposed an unsupervised method for single-image SR. However, this
method is improper for processing medical images due to its unstable training process and exces-
sive training time. Ravì et al.33 proposed an unsupervised SR method for endomicroscopy; how-
ever, this method requires certain hardware parameters for the endomicroscopy imaging device.
Accordingly, there is demand for stable, time efficient, and highly versatile unsupervised SR
method.

Clinical CT

Tumor

Bronchus

5 cm

(a) Clinical CT images cropped from a clinical CT volume.

µCT

Tumor

Bronchus

1 cm

(b) µCT images cropped from a µCT volume.

Fig. 1 Comparison of clinical CT and μCT. In (a), the surrounding of the tumor (yellow arrows) and
edge of bronchus (red arrows) are jagged. We can obtain from (b) about the tumor’s invasion
(tumor cells to disrupt the basement membrane and invade other tissues,10 pointed by yellow
arrows) and the apparent edge of the bronchus (red arrows). The resolution of (a) and (b) is totally
different, as shown by the red scale line.
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This paper proposes SR-CycleGAN, an unsupervised SR method that does not require paired
LR-HR images to perform the SR of lung clinical CT images. First, we introduce a novel loss
function named multi-modality super-resolution (MMSR) loss for preventing intensity variation
of an SR image from the original domain (clinical CT) into the HR domain (μCT). Second, we
design an optimal and time-saving network structure for SR. To prove our method’s effective-
ness, we built a clinical-μCT database for our experiments and evaluated our method using this
database. To the best of our knowledge, our method is the first approach to perform the SR of
clinical CT using μCT.

The contributions of our method are: (1) a novel loss function named MMSR loss for cross-
modality SR from clinical CT to μCT scale, (2) a specially designed SR network structure for
shortening training time and enhancing accuracy, and (3) a newly built clinical CT − μCT dataset
for verifying the feasibility of our proposed cross-modality SR method. Our code is available at
https://github.com/zhuofeng/SR-cycleGAN.

2 Method

2.1 Overview

We propose an unsupervised method for performing the SR of clinical CT to the μCT-scale,
using unpaired clinical CT − μCT images for training. We call our method SR-CycleGAN,
since the structure of SR-CycleGAN is based on CycleGAN. The novelty of SR-
CycleGAN consists of three aspects: (1) a network for SR, where the image-to-image trans-
lation networks of conventional CycleGAN were replaced by SR networks. The output SR
image size is 2k-times (k ∈ N) larger than the input LR image. (2) A loss function named
MMSR loss, which ensures that the output SR image has the same structure as that of the
input LR image. (3) An optimized network structure for reducing training time and achieving
better quantitative/qualitative results.

For training, our method requires clinical CT images and μCT images. Inputs of the network
are 2D CT images (LR images) cropped from clinical CT volumes. Outputs are corresponding
SR images. It is noteworthy that the height and width of SR images are 2k-times (k ∈ N) larger
than those of the LR image.

2.2 Conventional CycleGAN

This section explains conventional CycleGAN to better understand our SR-CycleGAN.
CycleGAN34 is an unsupervised image-to-image translation method based on deep generative
models. It can learn to translate an image from a source domain X to a target domain Y in
the absence of paired examples. The mathematical idea of CycleGAN is to obtain a generator
G1: X → Y and another generator G2: Y → X. At the training stage of CycleGAN, the gen-
erators G1 and G2 are trained simultaneously, and a loss named cycle-consistency loss is
adopted to maintain cycle-consistency G2ðG1ðxÞÞ ≈ x and G1ðG2ðyÞÞ ≈ y. Here, x and y are
the images from domain X and domain Y, respectively. The cycle-consistency loss is for-
mulated as

EQ-TARGET;temp:intralink-;e001;116;210Lcycðx; G2ðG1ðxÞÞÞ; y; G1ðG2ðyÞÞÞ ¼ Ex∼X;y∼Y½kx; G2ðG1ðxÞÞÞk22 þ ky; G1ðG2ðyÞÞk22�; (1)

where k · k22 is the l2-norm. Furthermore, to generate more realistic images, a CNN-based
discriminator D1 is used to distinguish generated images G1ðxÞ and real images y. In addi-
tion, another generator D2 is used to distinguish generated images G2ðyÞ and real images x.
Accordingly, generators G1 and G2 are trained to fool the discriminators D1 and D2.
Moreover, D1 and D2 will help generators G1 and G2 to generate images that are closer
to the target domain. Achieving this objective of generating more realistic images involves
loss terms named adversarial losses. The adversarial losses are formulated as
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EQ-TARGET;temp:intralink-;e002;116;735

LGANðG1ðxÞ; yÞ ¼ Ex∼X;y∼Y½log D1ðyÞ þ ð1 − log D1ðG1ðxÞÞÞ�;
LGANðG2ðyÞ; xÞ ¼ Ex∼X;y∼Y½log D2ðxÞ þ ð1 − log D2ðG2ðyÞÞÞ�: (2)

The combination of adversarial losses and cycle-consistency loss is used for the unpaired
image-to-image translation in CycleGAN.

2.3 SR-CycleGAN

The conventional CycleGAN is not designed for SR. Since CycleGAN is an image-to-image
translation network, output and input images are of the same size. However, in performing the
SR of a given image, the output image’s size is larger than the input image, since the output
image’s resolution is higher than that of the input. Furthermore, CycleGAN faces problems such
as providing diverse outputs.35 In the SR of medical images, we desire an output image that has
the same anatomical structures as the input image. The SR result of a bronchus should still have
the shape of a bronchus. Due to such constraints, we propose an SR network based on
CycleGAN, and we named our method SR-CycleGAN. The structures of CycleGAN and
SR-CycleGAN are shown in Fig. 2. Here, the input size and output size of CycleGAN are the
same, but the output size is larger than the input in SR-CycleGAN.

Discriminator Discriminator 

Fake
or

real
map

Fake
or

real
satellite 
photo

Generator 

Generator 

Fake map 
256 × 256

Real map 
256 × 256

Satellite photo 
256 × 256

Fake satellite photo 
256 × 256

Discriminator Discriminator 

Fake
or

real
µCT

Fake
or

real
clinical CT

Back propagate downsample loss and SSIM loss to network

Back propagate upsample loss and SSIM loss to network

Clinical CT 
32 × 32

Fake clinical CT 
32 × 32

SR output 
256× 256

µCT 
256 × 256

SR generator 

Generator 

(a) Conventional CycleGAN.

(b) SR-CycleGAN.

Fig. 2 Structure comparison of (a) conventional CycleGAN and (b) SR-CycleGAN (our method).
Conventional CycleGAN is an image-to-image translation network, where both its input and output
are 256 × 256 pixels. Our method is an SR network. Its input size is 32 × 32 pixels, where its
output size is 256 × 256 pixels.
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2.3.1 Network structure of SR-CycleGAN

The specific network structure of SR-CycleGAN is shown in Fig. 3. As shown in Fig. 3(a), we
modified conventional CycleGAN’s image-to-image translation neural network (generator) G1

to an SR neural network by removing downblocks/upblocks (definitions of downblocks/
upblocks are given in Fig. 3) and adding pixel-shuffling layers. In conventional CycleGAN,
the input and output of G1 are of the same size. We input an image with a size of n × n pixels
into G1 of CycleGAN. Then we obtained the same-sized image of n × n pixels as output. On the
other hand, by inputting an image with a size of n × n pixels into G1 of SR-CycleGAN, we
obtained an image of 2kn × 2kn (k ∈ N) pixels as output. The original network structure of
generator G1 has three “downblocks” at the network’s beginning, as shown in Fig. 3. Each
downblock contains a convolution layer that scales down the image to 1/2 of its original size,
following a batch normalization layer and an activation layer. If we input an image of
32 × 32 pixels into three downblocks, we would obtain feature maps of 4 × 4 pixels. Such small
feature maps would wash away the spatial features of the given image. Therefore, we remove
the downblocks of the generator G1. Upblocks consist of deconvolution layers that scale up the
feature maps to their original size in generator G1 of CycleGAN. Since we remove the

(a)

(b)

(c)

Fig. 3 Modification from CycleGAN to SR-CycleGAN. The modifications of G1 are as follows.
(1) Removal of downblocks to maintain spatial information of the input image as shown in (a).
(2) Removal of upblocks because feature maps no longer need them for scaling up as shown
in (b). (3) Addition of sub-pixel shuffling layers at the end of the network for scaling up feature
maps to the SR image. G2 is a generator that shrinks an input image of 256 × 256 pixels into
an image of 32 × 32 pixels. We added three downsample blocks (downblocks) to generator
G2. The specific structure of each block is shown in (c).
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downblocks in SR-CycleGAN, the feature maps are no longer scaled-down, and thus we also
remove the upblocks in SR-CycleGAN. Finally, SR-CycleGAN is an SR network. Thus, we
need to scale up feature maps at the end of the network to obtain the SR image. Use of a
sub-pixel shuffling layer has been proven to reduce computational complexity, save computing
time, and perform significantly better than using a deconvolution layer in SR operation.36

Therefore, we add sub-pixel shuffling layers at the end of the network for scaling up feature
maps to obtain the SR image as shown in Fig. 3(a).

In SR-CycleGAN, generator G2 is an inverse function of generator G1. Since generator G1

scales up an input image to an SR image, we modified the generator G2 to scale down an HR
image to an LR image. In conventional CycleGAN, an image with a size of 2kn × 2kn (k ∈ N)
pixels is input intoG2, and an image of the same size is produced as output. On the other hand, in
generator G2 of SR-CycleGAN, we obtain an image of n × n as output from an input image of
size 2kn × 2kn (k ∈ N). We added downblocks consisting of downsampling layers at the end of
generator G2 to scale down the feature maps, as shown in Fig. 3(b).

2.3.2 Multi-modality super-resolution loss in SR-CycleGAN

There are two important factors in the SR of clinical CT images. One is anatomical structure, and
the other is intensity distribution. Here, we explain the relationship between anatomical structure
and intensity distribution. Structures such as arteries, bronchi, and alveoli are anatomical struc-
tures. Intensity distribution describes how a certain tissue has a certain intensity (grayscale). The
intensity of clinical CT is described by the Hounsfield scale, and a specific substance such as
bone has a specific intensity of þ300 to þ1900.37 On the other hand, the intensity of μCT
changes with every scan, so the intensity of a specific substance varies slightly at each time
of scan.

The same anatomical structures have totally different intensity distributions between clinical
CT and μCT. For instance, in clinical CT images, the intensities of blood vessels and bronchus
walls are around 0 and −500 Hounsfield units (H.U.). In μCT images, the intensities of blood
vessels and bronchus walls are around 15,000 and 11,000 in the scanner used in our experiments.
The intensity distribution of μCT focuses on a range of about [2000, 15,000] as shown in
Fig 4(b), while the intensity of a lung’s clinical CT is distributed relatively uniformly in the
range ½−1000;500� as shown in Fig. 4(a). Even if we normalize the intensities of both μCT and
clinical CT to the range ½−1;1�, the histograms of the two intensity distributions are still very
different.

For the SR of medical images, a drastic change in image appearances may mislead clinicians.
We need anatomical structures such as blood vessels and bronchi in clinical CT images (LR
image) to maintain their original size and shape after SR. In addition, we have to ensure that
the intensity distribution of the clinical CT’s SR result stays close to that of the original clinical
CT image.

The loss function used in conventional CycleGAN does not ensure that input LR and output
SR images have the same anatomical structures and intensity distribution. If we only modify the
network structure of CycleGAN as shown in Sec. 2.3.1, the modified network outputs SR images
with totally different intensity and anatomical structures from the input LR image. The objective
of conventional CycleGAN is to output images close to the target domain instead of the source
domain. In clinical CT image SR, the source domain is the LR domain (clinical CT) and the
target domain is the SR domain (μCT). Therefore, CycleGAN with conventional loss terms out-
puts SR images with no similarity to the input LR image. Loss terms that guarantee that the
output SR image has the same anatomical structures and intensity distribution as the input
LR image are desired.

We propose a novel loss function named MMSR loss as shown in Fig. 5. The MMSR loss
contains the following terms: (1) structural similarity (SSIM) loss, (2) downsample loss, and
(3) upsample loss. As shown in Fig. 5, the downsample loss and upsample loss ensure that the
SR image has a similar intensity distribution to that of the input LR image, and the SSIM loss
ensures that the SR image has similar anatomical structures to those of the input LR image.
Consequently, we use the MMSR loss to train SR-CycleGAN.
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SSIM loss. The first loss term we propose is named SSIM loss. SSIM38 is an indicator that
evaluates the structure similarity of two images. SSIM between two images is defined as

EQ-TARGET;temp:intralink-;e003;116;212SSIMða; bÞ ¼ ðμaμb þ C1Þð2σab þ C2Þ
ðμ2a þ μ2b þ C1Þðσ2a þ σ2b þ C2Þ

; (3)

where μa and μb are the average intensity of given images a and b, respectively. σa and σb are the
variance of given images a and b, respectively. σab is the covariance of given images a and b.
C1 and C2 are constant numbers included to avoid instability. Based on this equation, we set the
loss term named SSIM loss as

EQ-TARGET;temp:intralink-;e004;116;119LSðx; xSRÞ ¼ Ex∼X½1 − SSIMðx; f↓ðxSRÞÞ�; (4)

where x is an input clinical CT image, xSR is the SR image, X is the domain of clinical CT
images, and f↓ðÞ is the average pooling39 function. Average pooling calculates the average value

(a) Intensity distribution of clinical CT image.

(b) Intensity distribution of µCT image.

Fig. 4 The intensity distribution of clinical CT image and μCT image. Intensity of clinical CT is
described by the Hounsfield scale, and a specific substance such as bone has a specific intensity
of þ300 ∼þ1900.37 The intensity of μCT is not described by the Hounsfield scale, and a specific
substance’s intensity varies slightly at each time of scan. An example of a clinical CT image and its
intensity distribution is shown in (a). An example of a μCT image and its intensity distribution is
shown in (b). Histogram at right side: x axis is the intensity value of a particular pixel, while y-axis is
the percentage of corresponding intensity. For the blue curve of the graph (a), around 0 H.U.
on the x axis, the y axis is around 0.11. This implies that the number of voxels with an intensity
of −100 ∼ 0 H.U. of clinical CT is around 11% of the total number of voxels. It is noteworthy that for
clinical CT, we count the number of voxels by every one hundred, but since the intensity range of
μCT is huge, we count the number of voxels here by every one thousand. The histograms illustrate
that the intensity distributions of clinical and μCT are very different, which is one reason why
CycleGAN without the proposed MMSR loss failed to perform SR of clinical CT using μCT images.
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for patches of a feature map and uses it to create a downsampled (pooled) feature map.40 f↓ðÞ
rescales a given image to 1∕n ðn ∈ RÞ of its original size by width and height. We use
1 − SSIMðx; f↓ðxSRÞÞ as the basis of this loss term, since we desire the SSIM of x and f↓ðxSRÞ
to be close to 1.

Downsample loss. To prevent a change of intensity in the CT image after SR, we propose
another loss term named the downsample loss, which is written as

EQ-TARGET;temp:intralink-;e005;116;367LDðx; xSRÞ ¼ Ex∼Xkðx; f↓ðxSRÞÞk22; (5)

where k · k22 is the square of the l2-norm, x is the input clinical CT (LR) image, and xSR is the SR
image. We call this the downsample loss because it is calculated using the downsampled SR
image f↓ðxSRÞ and the input LR image x. Since the downsample loss calculates the pixel-wise
loss between the SR and LR images, this loss can prevent the SR image xSR from deforming and
changing of its intensity in relation to the LR image.

Upsample loss. The third proposed loss term is named upsample loss. As shown in
Fig. 5(b), in SR-CycleGAN, there is another generator G2 that can translate a given μCT image
y into a clinical CT-like image yLR. By the same principle as downsample loss, to prevent a
change in the intensity between y and yLR, the upsample loss is formulated as

EQ-TARGET;temp:intralink-;e006;116;212LUðy; yLRÞ ¼ Ey∼Ykðy; f↑ðyLRÞÞk22; (6)

where f↑ðÞ is the nearest upsampling function. The nearest upsampling function selects the value
of the nearest pixels of a feature map, and then assigns this value to new pixels to create an
upsampled feature map. f↑ðÞ rescales a given image to k (k ∈ R) times its original size by width
and height, and Y is the domain of μCT images y. We call this the upsample loss because it is
calculated from the l2 norm between the upsampled fake clinical CT f↑ðyLRÞ and the original
μCT y.

Adding MMSR loss in SR-CycleGAN. The MMSR loss consists of SSIM loss, down-
sample loss, and upsample loss. The MMSR loss is formulated as

Input image Generator 
(SR network) 

SR output 

SSIM loss 
Downsample loss 

Downsample

32 × 32 256 × 256

32 × 32
Downsampled image 

Input image Generator 
(Downsample network) 

Output 

Upsample

256 × 256 32 × 32

256 × 256
Upsampled image

SSIM loss 
Upsample  loss 

(a) Downsample loss and SSIM loss. (b) Upsample loss and SSIM loss.

Fig. 5 Illustration of proposed loss terms. SSIM loss and downsample loss between input clinical
CT image x and output SR image xSR are shown in (a). We use the average pooling function f ↓ðÞ
to downsample xSR to the same size of input x . Then we calculate the SSIM loss and downsample
loss of x and f ↓ðxSRÞ. These losses are calculated to optimize the parameters in generator G1.
SSIM loss and upsample loss between input μCT image y and output downsample image yLR are
shown in (b). We use the nearest upsampling function f ↑ðÞ to upsample the generated clinical CT-
like low-resolution image yLR. Then we calculate the SSIM loss and downsample loss of y and
f ↑ðyLRÞ. These losses are calculated to optimize the parameters in generator G2.
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EQ-TARGET;temp:intralink-;e007;116;735

LMMSRðx; y; yLR; xSRÞ ¼ λ1LSðx; f↓xSRÞÞ
þ λ2LSðy; f↑ðyLRÞÞ
þ λ3LDðx; f↓ðxSRÞÞ
þ λ4LUðy; f↑ðyLRÞÞ; (7)

where LSðx; f↓ðxSRÞÞ is the SSIM loss between the input clinical image x and the output SR
image xSR. LSðy; f↑ðyLRÞÞ is the SSIM loss between the μCT image y and the generated clinical
CT-like image yLR. LDðx; f↓ðxSRÞÞ is the downsample loss of x and xSR. LUðy; f↑ðyLRÞÞ is the
upsample loss of y and yLR. f↓ðÞ is the average pooling function that scales up a given image.
f↑ðÞ is the nearest upsampling function that scales down a given image. λ1, λ2, λ3, and λ4 are
weights. We add the proposed MMSR loss as an additional loss term into the proposed SR-
CycleGAN. We formulate the total loss function of SR-CycleGAN as

EQ-TARGET;temp:intralink-;e008;116;571

LTotal ¼ λ1LSðx; f↓ðxSRÞÞ
þ λ2LSðy; f↑ðyLRÞÞ
þ λ3LDðx; f↓ðxSRÞÞ
þ λ4LUðy; f↑ðyLRÞÞ
þ λ5LGANðxSR; yÞ
þ λ6LGANðyLR; xÞ
þ λ7Lcycðx; G2ðxSRÞ; y; G1ðyLRÞÞ; (8)

where LGANðxSR; yÞ and LGANðyLR; xÞ are GAN loss, and Lcycðx; G2ðxSRÞ; y; G1ðyLRÞÞ is cycle-
consistency loss proposed in the conventional CycleGAN described in Sec. 2.2. λ5, λ6, and λ7 are
weights. By adding the MMSR loss to CycleGAN, we successfully performed the SR of clinical
CTof lung cancer patients to the μCT level, while conventional CycleGAN failed to perform SR.

2.4 Training and Inference of SR-CycleGAN

In the training phase, the input of generator G1 is a clinical CT image with the size of n × n
pixels. We denote the clinical CT image as x. The generator G1 generates an SR image xSR ¼
G1ðxÞ with a size of 2kn × 2kn pixels. On the other hand, a μCT image ywith a size of 2kn × 2kn
pixels is input into the generator G2. The generator G2 generates a clinical CT-like image
yLR ¼ G2ðyÞ of n × n pixels from the μCT image y of 2kn × 2kn pixels. The loss of the entire
SR-CycleGAN is calculated from x, xSR, y, and yLR. Then the loss is used for to optimize the
network.

For inference, we only use the trained generator G1. We extracted images of size n × n pixels
from clinical CT and input them into the trained network G1. The output is SR images of size
2kn × 2kn pixels.

3 Experiments and Results

3.1 Datasets

In our experiments, we newly built a dataset containing ten μCT volumes and eight clinical
CT volumes. The clinical CT volumes were scanned by a clinical CT scanner (SOMATOM
Definition Flash, Siemens Inc., Munich, Germany). The resolution of the clinical CT
volumes was 0.625 × 0.625 × 0.6 mm3∕voxel. The size of the clinical CT volumes was
512 × 512 × 435 ∼ 554 voxels. The μCT volumes were scanned by a μCT scanner (inspeXio
SMX-90 CT Plus, Shimadzu Inc., Kyoto, Japan) as shown in Fig. 6(a). The lung cancer spec-
imens were fixed by Heitzman’s method41 as shown in Fig. 6(b). Lung specimens were scanned
at isotropic resolutions of 42 ∼ 52 × 42 ∼ 52 × 42 ∼ 52 μm3∕voxel. The size of the μCT
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volumes was 1024 × 1024 × 545 ∼ 983 voxels. We trained SR-CycleGAN using five clinical
CT volumes and five corresponding μCT volumes of lung cancer specimens. We evaluated
the SR-CycleGAN qualitatively on three clinical CT volumes and quantitatively on five μCT
volumes. These clinical and μCT volumes were not used for training.

3.2 Preprocessing

Chest clinical CT images have various tissues outside the lungs that are not appropriate for our
experiments, such as bones, muscles, esophagus, etc. We first segmented lung regions from
clinical CT chest images. We conducted region growing42 to obtain a coarse segmentation mask
of the lung and performed morphological operations to fill the holes in the coarse segmenta-
tion mask.

μCT images also require a target region restriction. In our experiments, lung specimens were
placed in a plastic cylinder and put into the μCT scanner for scanning. Therefore, parts of the
plastic cylinder are shown in the μCT images. Since the plastic cylinder is not suitable for our
experiment, we manually cropped lung regions from the μCT images, and only used the lung
regions for the experiment.

In addition, normalization of the intensities of both clinical CTand μCT images was required.
We normalized both the intensity of μCT and clinical CT to the range ½−1;1�. In clinical CT, the
intensity of a tissue is represented using the Hounsfield scale, with water having a value of 0
H.U., tissues denser than water having positive values, and tissues less dense than water having
negative values.43 In μCT, the intensity is not represented by Hounsfield scale. The intensity
range of the clinical CT volume was about 3500 H.U. (intensity of air is around −1000
H.U. and intensity of bone is around 2500 H.U.), but the scale of the μCT volume was about
16,000 (intensity of air is around −1000 to 0, and cancer is around 15,000). For clinical CT, we
normalized the intensity in this way: For intensity larger than 2500 H.U. (larger than the bone
intensity), we set the intensity to 2500 H.U. We also set voxels that have intensity smaller than
−1000 H.U. to −1000 H.U. For μCT, we set voxels that have intensity higher than 15,000
(higher than cancer) to 15,000 and set voxels that have intensity smaller than 0 to 0.
Finally, the intensities of both clinical CT and μCT images were compressed to ½−1;1�.

3.3 Parameter Settings

3.3.1 SR rate and training patch numbers

Conventionally, SR was conducted 2k (k ∈ N) times, which means the SR image was 2k (k ∈ N)
times larger than the LR image. Considering the resolution of clinical CT volumes (625 mm) and
μCT volumes (52 mm), we chose 8× SR. In the training phase, we extracted 2000 patches with a
size of 32 × 32 pixels randomly from each clinical CT case. We also extracted 2000 patches of

(a) µCT scanner. (b) Lung specimen.

Fig. 6 Our μCT scanner and a sample of lung specimen. μCT scanner (inspeXio SMX-90 CT Plus,
Shimadzu Inc., Kyoto, Japan) is shown in (a). Resected lung cancer specimen from human lung
cancer patient is shown in (b).
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the size of 256 × 256 pixels randomly from each μCT case. Since we had five cases for training,
the total numbers of clinical and μCT patches were both 10,000.

3.3.2 Parameters for network training

We used Adam44 for stochastic optimization of the network. We set the learning rate to 10−5,
while the training rate remained 10−5 from 1 to 100 epochs, and decayed linearly from 10−5 to 0
between 100 to 200 epochs. The mini-batch size of training was 4. Training was continued until
200 epochs. We manually chose weights λ of each loss term that could obtain the best qualitative
results on the training dataset. Weights λ of each loss term are listed in Table 1. All networks
were implemented by PyTorch.

3.3.3 Evaluation methods

For qualitative evaluation, we utilized three clinical CT volumes. We cropped clinical CT
images of size 32 × 32 pixels from three clinical CT volumes and input the clinical CT
images into generator G1 of trained SR-CycleGAN. Then, we obtained SR images of size
256 × 256 pixels. For demonstrating the effectiveness of network modification and MMSR loss
of SR-CycleGAN, we compared SR-CycleGAN with conventional CycleGAN. Since input and
output of CycleGAN is of the same size, CycleGAN could not be applied directly for SR.
Therefore, we add upblocks into CycleGAN’s generator G1 to ensure output of G1 is eight times
larger than input (by width and height). We name this CycleGAN as “CycleGAN with
upblocks.” We also conducted ablation experiments to verify the effectiveness of network
modification.

For quantitative evaluation, we proposed a novel quantitative evaluation method. In pre-
vious supervised SR studies,45 quantitative evaluations were often conducted by comparing the
output SR image with its HR counterpart. Therefore, paired LR images (clinical CT images)
and HR images (μCT images) were required for quantitative evaluations. Since we could not
obtain paired clinical CT∕μCT images, we conducted an alternative approach: First, we used
bicubic interpolation31 to downsample μCT images to 1/8 of their original size to simulate
clinical CT images (In image processing, bicubic interpolation is used for interpolating data
points on a 2D regular grid. Bicubic interpolation considers 16 pixels (4 × 4) around the pixel
to be interpolated and calculates a weighted addition of these 16 pixels as the new pixel.). For a
given μCT image of 256 × 256 pixels, we performed bicubic downsampling of the μCT image
to obtain an image size of 32 × 32 pixels and then input it into trained G1 to obtain a 256 ×
256 pixel SR output. We compared the SR output with the original μCT images using evalu-
ation metrics such as peak signal-noise ratio (PSNR).46 It is noteworthy that G1 is trained by
clinical CTand μCT images as explained in Sec. 3.3.1. We used five μCT cases of 1544 images
for quantitative evaluation.

We compared the following networks. Network1: CycleGAN with upblocks (no MMSR loss,
no network modification, only upblocks for a larger output image). Network2: CycleGAN with

Table 1 Parameters of each loss term.

λ1: weight for SSIM loss of G1 1.0

λ2: weight for SSIM loss of G2 1.0

λ3: weight for downsample loss 0.7

λ4: weight for upsample loss G1 0.3

λ5: weight for GAN loss of G1 and D1 1.0

λ6: weight for GAN loss of G2 and D2 1.0

λ7: weight for cycle-consistency loss 1.0
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network modification (sub-pixel shuffling layers but no MMSR loss). Network3: SR-CycleGAN
with downblocks (with MMSR loss, no sub-pixel shuffling layers). Network4: Proposed SR-
CycleGAN (with MMSR loss and sub-pixel shuffling).

We also quantitatively evaluated how sub-pixel shuffling layers reduce training time. Before
adding sub-pixel shuffling layers in generator G1, we used upblocks to upscale the feature maps
to a larger size. Figure 7 shows a comparison of G1 with/without pixel-shuffling layers. We used
2000 patches cropped from clinical CT images of 32 × 32 pixels and 2000 patches cropped from
μCT images of SR-CycleGAN for training.

3.4 Comparison of Results

SR results of SR-CycleGAN were compared with CycleGAN with upblocks in Fig. 8.
Furthermore, for evaluating the effectiveness of removing downblocks and introducing sub-pixel
shuffling layers, we also evaluated SR-CycleGAN with/without removing downblocks and
with/without sub-pixel shuffling layers as shown in Fig. 9.

3.4.1 Qualitative evaluation

We show the cropped part of the SR images obtained by the SR-CycleGAN in Fig. 8(c). The
results of CycleGAN with upblocks are shown in Fig. 8(b). In SR results of SR-CycleGAN, lung
anatomies, such as the bronchus, appear more clearly than the original clinical CT images as
indicated by red arrows in Fig. 8(c). CycleGAN with upblocks (no network modification except
adding upblocks and no MMSR loss) only produced results that have no similarity with the input
LR image (clinical CT image). Important anatomical structures such as the blood vessels and
bronchus disappeared, as indicated by red arrows in Fig. 8(b). The results demonstrate that the
proposed SR-CycleGAN is suitable for SR of clinical CT images.

The results of “SR-CycleGAN with downblocks”47 (SR-CycleGAN with MMSR loss but
without network modification) are shown in Fig. 9(b), which seems noisy, and the edge of the
blood vessel and bronchus has many artifacts indicated by red arrows. The results of SR-
CycleGAN are shown in Fig. 9(c), which is clearer and noiseless compared with Fig. 9(b).

To observe SR results from a larger scale, we illustrate both clinical CT images of the whole
lung region and images cropped from the lung region before and after SR in Fig. 10.

(a) Generator with upblocks (consisting of deconvolution layers).

(b) Generator with sub-pixel shuffling layer.

Fig. 7 To prove that the sub-pixel shuffling layers actually reduce computing time, we performed
experiments on two kinds of generator G1: (a) generator G1 with upblocks and (b) generator G1

with sub-pixel shuffling layers. We extracted 2000 patches for training on Nividia Tesla V100
(32 GB memory). (a) needed 491 s for training in each epoch, while (b) needed 353 s in each
epoch.
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3.4.2 Quantitative evaluation

The SR results and quantitative evaluation results are shown in Fig. 11 and Table 2. We used
PSNR and SSIM46 for quantitative evaluation. Table 2 shows that the proposed SR-CycleGAN
performed quantitatively better than other methods, with the highest PSNR and SSIM.

We also evaluated how sub-pixel shuffling layers reduce training time. SR-CycleGAN with-
out sub-pixel shuffling layers needs 491 s for training per epoch (2000 patches per epoch). After
replacing upblocks with sub-pixel shuffling layers, the entire network needs 353 s for training
per epoch. Thus, training time was significantly reduced. The network was trained on Nvidia
Tesla V100 (32 GB memory).

3.5 Ablation Studies

For accessing the effectiveness of different components of our method, we performed ablation
studies. On top of baseline (CycleGAN with upblocks), we progressively added network

(1)

(2)

(3)

(a) Clinical CT image. (b) CycleGAN with upblocks. (c) SR-CycleGAN.

(4)

Fig. 8 SR results of clinical CT images from one case. Rows (1) and (3) are images cropped from
blood vessels and lung field region. Rows (2) and (4) are images cropped from the bronchus and
blood vessels region. Column (a) are original clinical CT images. Column (b) and (c) are results of
“CycleGAN with upblocks” and our method, respectively. We can obtain that SR-CycleGAN output
reliable SR results, while CycleGAN with upblocks (no MMSR loss, no network modification, only
upblocks for larger output image) output results that do not have similarity with the input image. As
pointed by red arrows, blood vessels and bronchus in SR images of CycleGAN with upblocks
severely deformed or disappeared, while blood vessels and bronchus in SR-CycleGAN’s SR
images have sharp edges and same shape as in LR images.
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modification and the MMSR loss function. Further, to clear effectiveness of each component of
MMSR loss, we also analyzed each term in MMSR loss separately. Experiments showed that our
method with all proposed components performed best quantitatively and qualitatively.

3.5.1 Effectiveness of network modification

We first analyzed the effect of network modification. As network modification, we removed
downblocks and added pixel-shuffling layers to a conventional CycleGAN’s generator G1.
Network modification avoided the need to encode the input image into smaller feature maps,
thus preserving spatial information while performing SR. Additionally, it also reduced train-
ing and referencing time. With network modification, PSNR increased by 1.75 dB and SSIM
increased by 0.32 compared to the baseline (CycleGAN with upblocks). The qualitative
results of baseline and baseline with network modification are shown as condition A and
condition C, respectively, in Fig. 12; images of the latter were qualitatively better than those
of the former. Quantitative results of network modification are shown in Table 3. In Table 3, the
PSNR and SSIM score of condition C (baseline with network modification) are higher than those
of condition A (baseline). Therefore, network modification is required in our method.

(1)

(2)

(3)

(a) Clinical CT image. (b) SR-CycleGAN
with downblocks.

(c) SR-CycleGAN
with sub-pixel shuffling.

(4)

Fig. 9 Comparison of SR-CycleGAN before/after removing downblocks and adding sub-pixel
shuffling layers. Rows (1), (2), and (3) are CT images of the bronchus and blood vessel region.
Row (4) has CT images of the tumor and bronchus region. Column (a) are clinical CT images.
Column (b) and (c) are results of “SR-CycleGAN with downblocks” and “SR-CycleGAN with
sub-pixel shuffling” respectively. After removing downblocks and adding sub-pixel shuffling layers,
SR-CycleGAN performed better qualitatively. As indicated by the red arrows, results of SR-
CycleGAN with downblocks (SR-CycleGAN with downblocks and before adding sub-pixel shuf-
fling layers) have many artifacts, and the edges of the bronchus and blood vessels look discon-
tinuous. On the other hand, these defects do not appear in the results of SR-CycleGAN.
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3.5.2 Effectiveness of MMSR loss

We analyzed the effectiveness of the proposed MMSR loss. The MMSR loss ensures that the
output SR image has similar pixel-wise intensity distribution to that of the input LR image. The
MMSR loss also prevents the network from generating arbitrary outputs. With the MMSR loss,
PSNR increased by 2.84 dB; SSIM increased by 0.39 compared to the method without
MMSR loss.

We further studied the effectiveness of each loss term in the MMSR loss. The MMSR loss
contains the following components: (1) SSIM loss (containing two loss terms), (2) downsample
loss, and (3) upsample loss. Upsample loss and downsample loss ensure that the output SR
image has a higher pixel-wise similarity with the input image. SSIM loss ensures that the output

Before SR After SR

Before SR After SR

(a) SR result of a lung clinical CT image.

(b) SR result of another lung clinical CT image.

Fig. 10 To observe SR results from larger scale, this image illustrates both clinical CT images of
whole lung region and images cropped from lung region before and after SR. (a) CT image
extracted from axial axis. (b) Another CT image extracted from axial axis. In (a) and (b), edges
of arteries and bronchus (red arrows) are smoother and clearer after SR.
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image has a higher structural similarity48 with the input image. We studied various combinations
of loss terms and show their quantitative results in Table 3. In Table 3, each loss term in MMSR
loss brought an increase in PSNR and SSIM, and the SSIM loss (containing two loss terms)
brought more improvement than other loss terms (condition I in Table 3). We chose four com-
binations of loss terms (conditions A, H, I, and M in Table 3) whose qualitative results have huge
differences. The qualitative evaluation results of these four combinations are shown in Fig. 12,

Table 2 Quantitative evaluation of our methods. Network1: CycleGAN with upblocks (no MMSR
loss, no network modification, only upblocks for larger output image). Network2: CycleGAN with
network modification (sub-pixel shuffling layers but no MMSR loss). Network3: SR-CycleGAN with
downblocks (with MMSR loss, no sub-pixel shuffling layers). Network4: proposed SR-CycleGAN
(with MMSR loss and sub-pixel shuffling). Bold values are the highest.

Network1 Network2 Network3 SR-CycleGAN (our method)

PSNR 13.64 15.39 16.48 17.71

SSIM 0.05 0.37 0.44 0.54

Condition A Condition C Condition H Condition I Condition M
(Our method) 

Input (LR) image HR image
(ground truth)

Fig. 12 Qualitative results of ablation studies. We chose five combinations of each proposed
component and illustrate the qualitative results of each combination in this figure. The method
with all components (our method) achieved the highest PSNR and SSIM score. A, C, H, I, and
M (our method) correspond to the “condition” column of Table 3. Upper: whole images. Lower:
zoom-in on the regions in the red boxes for better comparison.

(1)

(2)

(a) LR image. (b) SR-CycleGAN
with downblocks.

(c) SR-CycleGAN
with sub-pixel shuffling.

(d) HR image.

Fig. 11 Qualitative results of SR-CycleGAN. SR results of SR-CycleGAN with downblocks are
shown in (b), with PSNR of 16.48 dB. SR results of SR-CycleGAN with sub-pixel shuffling layer
and without downblocks are shown in (c), with PSNR of 17.71 dB. Column (a) and (d) are LR
images and corresponding HR images, respectively. We used bicubic downsampling31 to rescale
μCT images (HR image) to 1/8 of their original sizes to simulate clinical CT images (LR images),
and then input the downsampled image into trained SR-CycleGAN’s generatorG1. It is noteworthy
that the higher PSNR indicates a better result.
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which shows that our method’s output (condition M) has the highest similarity with the HR
image (ground truth), compared with the other combinations of loss terms (conditions A, C,
H, and I).

3.6 Comparison with Recent Baselines

We compared our method with three recent SR methods. We first compared our method with a
recent unsupervised baseline named CinCGAN.32 CinCGAN first utilizes cycle-in-cycle net-
work structure to map a noisy and blurry LR image to a noise-free LR image. Then the noise-
free LR image is upsampled with a pre-trained deep SR model. CinCGAN is trained with LR-
HR images in an end-to-end manner. The trained CinCGAN is used for performing SR of a
given LR image.32 We also compared our method with a newly proposed SOTA unsupervised
SR method named pseudo-SR,49 and a widely used supervised SR method named ESRGAN.23

Pseudo-SR is an SR method consists of an unpaired kernel/noise correction network and a
pseudo-paired SR network. The correction network removes noise and adjusts the blurring
kernel50 of the input LR image. Then the pseudo-paired SR network upscales the corrected
clean LR image.49 ESRGAN is a supervised SR method utilizing newly proposed loss terms
such as adversarial loss and perceptual loss, and the residual-in-residual dense block into SR
network.51 We did not have paired clinical CT (LR) and μCT (HR) images. Therefore, we
trained ESRGAN with unpaired LR-HR images. The results of our method and these recent
baselines were shown in Fig. 13. As shown in the red boxes in Fig. 13, our method output SR
images close to the HR images (ground truth). Recent SR baselines output SR images quite
different from the HR images (ground truth). The PSNR and SSIM of our method were the
highest among all methods, as shown in Table 4. We also compared our method’s inference
time, training time, and parameter size with recent baselines in Table 5. As shown in the
Table 5, training time for one epoch was the shortest with our method, and the number of
network parameters was the smallest.

Table 3 Ablation studies and quantitative results. SSIM loss 1 is LSðx ; f ↓ðxSRÞÞ and SSIM loss 2
is LSðy ; f ↑ðyLRÞÞ. Applying network modification and all loss terms simultaneously obtains the
highest PSNR and SSIM means such a component is not utilized, and F0FC means such a com-
ponent is utilized. Bold values are the highest.

Condition
Network

modification
Upsample

loss
Downsample

loss
SSIM
loss 1

SSIM
loss 2 PSNR SSIM

A — — — — — 13.64 0.05

B — ✓ ✓ ✓ ✓ 16.48 0.44

C ✓ — — — — 15.39 0.37

D ✓ ✓ — — — 15.83 0.40

E ✓ — ✓ — — 16.53 0.42

F ✓ — — ✓ — 15.13 0.27

G ✓ — — — ✓ 14.18 0.25

H ✓ ✓ ✓ — — 15.92 0.40

I ✓ — — ✓ ✓ 16.92 0.49

J — ✓ ✓ ✓ ✓ 16.48 0.44

K ✓ — ✓ ✓ ✓ 15.78 0.46

L ✓ ✓ — ✓ ✓ 17.70 0.50

M (our method) ✓ ✓ ✓ ✓ ✓ 17.71 0.54
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3.7 Experimental Results on COVID-19 Lung CT Segmentation
Challenge—2020 Dataset

We also performed an experiment with an additional benchmark CT dataset to examine whether
our method could perform SR of commonly used medical images (such as CT images). We chose
the COVID-19 Lung CT Segmentation Challenge—2020 dataset.52 This dataset has 249 cases
collected from patients of different hospitals, countries, ages, and genders. Here, 199 cases were
for training and 50 cases were for testing. We chose 4× SR (width and length of an output image
are four-times those of an input image). Input LR image size was 48 × 48 pixels, and output SR
image size was 192 × 192 pixels. We compared our method with recent baselines: unsupervised
SR methods CinCGAN32 and pseudo-SR,49 and a supervised method ESRGAN.51 Qualitative
results are shown in Fig. 14, and quantitative results are shown in Table 6. Our method out-
performed these recent baselines quantitatively as shown in Table 6. It could output clear images
and reconstruct important anatomical structures such as vessels and bronchi. Results of recent
baselines are blurred (CinCGAN and pseudo-SR) or unreasonable (ESRGAN) in Fig. 14. The
experimental results prove that our method is effective on commonly used medical images.

LR image ESRGAN CinCGAN Our method HR image
(Ground truth)

Pesudo-SR

Fig. 13 Qualitative comparison between our method and recent baselines on clinical CT − μCT
dataset. We compared our method with a recent supervised baseline (ESRGAN51) and two recent
unsupervised baselines (pseudo-SR49 and CinCGAN).32 Our method output convincing SR
results, while recent SR baselines output SR images quite different from the HR images (ground
truth). Upper: whole images. Lower: zoom-in on regions in the red boxes for better comparison.

Table 4 Quantitative comparison between our method and recent baselines. Our method has the
highest PSNR and SSIM score. These results were computed on the clinical CT − μCT dataset.
Bold values are the highest.

ESRGAN51 Pseudo-SR49 CinCGAN32 Our method

PSNR 15.32 11.08 9.99 17.71

SSIM 0.02 0.04 0.31 0.54

Table 5 Comparison of training time, inference time and number of parameters between our
method and recent baselines. Our method has the shortest average training time and the fewest
parameters compared to recent SR baselines ESRGAN,51 pseudo-SR,49 and CinCGAN.32 Bold
values are the highest.

ESRGAN51 Pseudo-SR49 CinCGAN32 Our method

Average training time (1 epoch) 3 h 41 min 9 h 47 min 12 h 13 min 40 min

Inference time 4 min 59 s 8 min 32 s 3 min 41 s 4 min 27 s

Number of network parameters 24,383,820 32,995,229 27,030,790 19,264,369
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4 Discussions

4.1 Unsupervised SR of Clinical CT Utilizing μCT Data

To the best of our knowledge, our method is the first method to perform SR on clinical CT to the
μCT scale without a corresponding HR image as ground truth. The method is also the first to
perform SR of clinical CT utilizing μCT data. MMSR loss and modification of networks enabled
SR-CycleGAN to perform SR by forcing SR images to have the same anatomical structures as
the input clinical CT (LR) images. We believe MMSR loss is more important than network
modification, since in Fig. 8(b), CycleGAN with upblocks (no MMSR loss, no network modi-
fication, only upblocks for larger output image) output results that do not have similarity with the
input images. As shown in Fig. 9(b), SR-CycleGAN with downblocks (with MMSR loss, no
network modification) performed SR of clinical CT images. However, these results were not as
good as SR-CycLeGAN with sub-pixel shuffling (with both MMSR loss and network modifi-
cation) in Fig. 9(c). MMSR loss enabled SR of clinical CT images, and modification of the
network enhanced the qualitative and quantitative results.

4.2 Effect of Hyperparameter Adjustment

We performed further experiments to address the effect of different hyperparameters on the final
result. Specifically, we changed the number of Resblocks, the convolution kernel size, and the
patch size for training. We showed the number of Resblocks, the convolution kernel size, and
the patch size utilized in our method in Fig. 15. First, we changed the number of Resblocks. The
number of Resblocks in generator G1 of our method was 9. Since we built our method based on
CycleGAN, whose numbers of Resblocks were 6 (for small patches) and 9 (for large patches),
we performed an experiment with a smaller number of Resblocks 6. In addition, since the differ-
ence between 9 (number of Resblocks in our method) and 6 (the smaller number of Resblocks)

LR image ESRGAN CinCGAN Our method HR image
(Gound truth)

Pseudo-SR

Fig. 14 Experimental result on COVID-19 Lung CT Lesion Segmentation Challenge—2020 data-
set.52 We compared our method with ESRGAN,51 pseudo-SR,49 and CinCGAN.32 It is noteworthy
that because our method is trained with unpaired LR-HR images pairs, we also train ESRGANwith
unpaired LR-HR images. ESRGAN output unreasonable results. Pseudo-SR and CinCGAN out-
put blurry and noisy results. On the other hand, our method output convincing results. Upper:
whole images from the axial axis. Lower: zoom-in on regions in the red boxes for better
comparison.

Table 6 Quantitative comparison between our method and recent baselines on the COVID-19
Lung CT Segmentation Challenge—2020 dataset.52 Bold values are the highest.

ESRGAN51 Pseudo-SR49 CinCGAN32 Our method

PSNR 7.47 17.68 23.26 26.10

SSIM 0.22 0.88 0.97 0.98
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was 3, we further performed an experiment with a larger number of Resblocks of 9þ 3 ¼ 12.
Furthermore, we performed an experiment with a larger or smaller convolution kernel. The first
Conv+BN+ReLU block in generator G1 of our method utilized a convolution kernel of size
3 × 3; the second Conv+BN+ReLU block utilized a convolution kernel of size 7 × 7. We
changed the first Conv+BN+ReLU block’s convolutional kernel size to 7 × 7 to test the effect
of a larger convolution kernel. Correspondingly, we changed the second Conv+BN+ReLU
block’s convolutional kernel size to 3 × 3 to test the effect of a smaller convolution kernel.
The patch size for training was also adjusted. The input patch size in our method was
32 × 32 pixels. We tried using smaller (24 × 24 pixels) and larger (48 × 48 pixels) patch sizes
to investigate the impact of patch size on the results.

Table 7 shows that using 9 Resblocks, 3 × 3 and 7 × 7 convolution kernel sizes, and 32 ×
32 pixels patch size led to the highest PSNR and SSIM score. Using either more or fewer
Resblocks, larger or smaller convolution kernel size, or larger or smaller patch size resulted
in a lower PSNR and SSIM score. Qualitative results of different hyperparameters were similar,
as shown in Fig. 16. It is obvious that the parts enclosed in the red boxes in Fig. 16 do not have
significant differences. In conclusion, the experimental results show that our method’s number of
Resblocks, convolution kernel sizes, and patch size resulted in the best quantitative result as
shown in Table 7. Additionally, the number of Resblocks, convolution kernel sizes, and patch
size do not have much effect on the qualitative results as shown in Fig. 16.

Fig. 15 Hyperparameters of our method’s generator G1. The first Conv+BN+ReLU block uses a
convolution kernel of size 3 × 3 and the second Conv+BN+ReLU block uses a convolution kernel
of size 7 × 7. Input patch size is 32 × 32 pixels and output size is 256 × 256 pixels. Number of
Resblocks is 9.

Table 7 Different hyperparameters result in different experimental results. Experimental results
showed that using nine Resblocks, 3 × 3 and 7 × 7 convolution kernel sizes, and 32 × 32 pixels
patch size results in the best PSNR and SSIM score. The red characters in each condition indicate
its difference with condition 1. Bold values are the highest.

Condition
Number of
Resblocks Convolution kernel size Patch size PSNR SSIM

1 9 3 × 3 and 7 × 7 32 × 32 pixels 17.71 0.54

2 6 3 × 3 and 7 × 7 32 × 32 pixels 17.49 0.44

3 12 3 × 3 and 7 × 7 32 × 32 pixels 15.36 0.45

4 9 7 × 7 and 7 × 7 32 × 32 pixels 16.73 0.41

5 9 3 × 3 and 3 × 3 32 × 32 pixels 15.20 0.43

6 9 3 × 3 and 7 × 7 24 × 24 pixels 16.04 0.36

7 9 3 × 3 and 7 × 7 48 × 48 pixels 17.52 0.53
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4.3 Novelty of Our Method and Difference from Recent CT SR Methods

Our method has three novel components: (1) a lightweight network equipped with sub-pixel
shuffling layers,36 (2) novel loss terms named upsample and downsample losses, and (3) a novel
loss term named SSIM loss. We modified components (1), (2), and (3) in applying them to our
task. We added component (1) in CycleGAN to apply component (1) in unsupervised scenarios.
Although components (2) and (3) have been used as loss terms in some SR methods,53 they were
never used to measure the similarities of different-size images (e.g., one image size of 32 × 32

and another of 128 × 128). We modified components (2) and (3) to measure the similarities of
differently sized images and utilized the similarities as loss terms to optimize our proposed net-
work. No existing CT SR method utilizes components (1), (2), and (3) at the same time. By
combining components (1), (2), and (3) in our method, we successfully implemented unsuper-
vised SR with a relatively lightweight network. As a result, our method successfully achieved SR
on a clinical CT − μCT dataset, which cannot be attained by recent CT SR methods.

Here, we compare the MMSR loss with other loss terms proposed in previous methods, and
discuss about the necessity of the MMSR loss. A relevant work named GAN-CIRCLE29 used

6 Resblocks
(Row 2 in Table 7)

Larger convolution kernel
(Row 4 in Table 7)

Smaller patch size
(Row 6 in Table 7)

Larger patch size
(Row 7 in Table 7)

Default parameter
(Row 1 in Table 7)

HR image

12 Resblocks
(Row 3 in Table 7)

Smaller convolution kernel
(Row 5 in Table 7)

Fig. 16 Results of different hyperparameter settings. We performed an experiment with generator
G1 with different numbers of Resblocks, different convolution kernel sizes, and different patch
sizes. Table 7 gives detailed parameters. We zoom in on the regions in the red boxes for a better
comparison.
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adversarial loss, cycle-consistency loss, identity loss, and joint sparsifying transform loss to indi-
rectly promote the consistency between input LR and output SR image. In contrast, our method
imposes the MMSR loss to directly constrain input LR and output SR images have higher SSIM
and pixel-wise similarity. In our newly built clinical CT − μCT dataset, LR and HR images have
huge intensity and structural difference. Therefore, if we train SR methods without directly con-
straints between input LR and output SR images on our clinical CT − μCT dataset, the trained
network tends to output SR images that is totally different from input LR images, such as results
of pseudo-SR in Fig. 13. In contrast, using the MMSR loss, our method obtained satisfying
qualitative and quantitative results. Another relevant network named CinCGAN32 uses modified
identity loss and modified TV loss to ensure SR network’s output has higher pixel-wise sim-
ilarity with input. However, CinCGAN only calculates the modified identity loss between input
LR and output SR image. On the other hand, our method calculates MMSR loss from (1) input
LR and output SR image and (2) HR image and corresponding synthesized LR image. Moreover,
our MMSR loss is proposed based on two evaluation metrics: MSE and SSIM. Our method
showed better performance than CinCGAN on MSE-based (PSNR) and SSIM-based evaluation
metrics.

We can further differentiate our method from recent supervised and unsupervised CT SR
methods. Recent supervised CT SR methods, such as ESRGAN for CT SR,54 require pairs of
LR-HR images for training. In contrast, our method does not need any paired LR-HR images
for training. Some image denoising methods could be applied in SR.55 GAN with network-in-
network structure embed with skip connection naming deep convolutional generative adver-
sarial network (DCSWGAN)20 was proved to be effective in CT image denoising. The gen-
erator of DCSWGAN consists of convolutional blocks, and each convolutional block consists
of convolutional layer, bias, and leaky rectified linear unit, which is similar to our method’s
generator G1. The generator of DCSWGAN uses a cascade structure containing two subnet-
works, one is a feature extraction network, the other is a reconstruction network. In contrast,
our method only uses one network for SR. A disadvantage of DCSWGAN is that it still needs
paired images for training. You et al. proposed an unsupervised SR method for CT and MRI
images named GAN-CIRCLE,29,56 and further applied to bone micro structure reconstruction57

and brain MRI reconstruction.58 GAN-CIRCLE performed 2× SR (resolution of output SR
image is two times of input LR image). On the other hand, we desire an 8× SR method which
performs SR of clinical CT images to μCT scale. Our method achieved 8× SR (SR from 32 ×
32 pixels to 256 × 256 pixels). Moreover, unsupervised SR methods such as CinCGAN32 and
GAN-CIRCLE29 can only perform SR between images of the same modality (e.g., LR MRI
images to HRMRI images); consequently, the LR and HR images do not have huge differences
aside from resolution. Therefore, recent SR methods performed poorly on our clinical CT −
μCT dataset, since our HR (μCT) and LR (clinical CT) images are from totally different
modalities.

4.4 Analysis of Parameter Selection of Loss Terms

Here, we analyze the parameter selection of each loss term and discuss how assigning weights to
each loss term leads to the best results. The overall loss function is composed of three terms:
(1) SSIM loss, (2) downsample loss, and (3) upsample loss. Various combinations of loss terms
lead to different quantitative results, as shown in Table 3. Table 3 shows that each loss function
contributes to the final result. SSIM loss (containing two loss terms) brings the highest PSNR
and SSIM score improvement. While the method is already equipped with SSIM loss, down-
sample loss and upsample loss can still improve PSNR and SSIM score slightly. Therefore, we
believe that a higher weight of SSIM loss together with smaller weights of downsample loss and
upsample loss brings the highest PSNR and SSIM score.

4.5 Effect of Downblocks in SR-CycleGAN

We performed experiments to verify the effectiveness of removing downblocks and adding pixel-
shuffling layers in generator G1. As shown in Fig. 9, the SR results obtained by generator G1

with downblocks and without pixel-shuffling layers [Fig. 17(a)] look blurred and noisy, while
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the SR results obtained by generator G1 without downblocks and with sub-pixel shuffling layers
[Fig. 17(b)] look clearer. This is because downblocks scale down the input images to a smaller
size. Input images have 32 × 32 pixels; downblocks scale down the input images into feature
maps of 4 × 4 pixels, and such small feature maps destroy spatial information in the input image.
Furthermore, generator G1 with downblocks [Fig. 17(a)] is deeper than generaor G1 without
downblocks [Fig. 17(b)]. Previous research affirmed that deeper stages of neural networks are
more semantic but spatially coarser.59 Thus, the shape of essential anatomical structures such as
the bronchus are likely to deform in the SR result, as shown in Fig. 9(b).

4.6 Effect of Reducing Computing Time Using Sub-Pixel Shuffling Layers

The sub-pixel shuffling layers were proved to shorten computing time, compared with
upblocks.36 We replaced upblocks with sub-pixel shuffling layers in the proposed SR-
CycleGAN. In Fig. 7, two kinds of network structures for generatorG1 are compared. The exper-
imental results show that training time was significantly reduced from 491 to 353 s for training
per epoch (2000 patches). For handling large-scale networks, such as CycleGAN, reducing com-
puting time is an important issue. Introducing sub-pixel shuffling layers saved computing resour-
ces without loss of accuracy.

4.7 Difficulty of Quantitative Evaluation

In conventional SR methods, quantitative evaluation is typically conducted by comparing SR
and HR image pairs. However, it is infeasible to obtain such pairs between clinical CT and μCT
images, as mentioned in Sec. 1. To perform quantitative evaluation, we used downsampled μCT
images instead of clinical CT images. We input the downsampled μCT image into trained gen-
eratorG1 and then obtained the SR result of downsampled μCT fromG1. Next, we compared the
SR result with the original μCT images. We used PSNR to compare the SR image and the origi-
nal μCT image. Since μCT images and clinical CT images have the same anatomical structures
(bronchi and arteries), downsampled μCT images can simulate clinical CT images to a certain
extent.

(a) Generator with downblocks. This is not utilized in SR-CycleGAN due to low-quality results and long training time.

(b) Generator of SR-CycleGAN without downblocks but with added sub-pixel shuffling layers.

(c) Composition of each block.

Fig. 17 Two kinds of generator G1 structures. We performed experiments on (a) G1 with down-
blocks and (b) G1 without downblocks but with added sub-pixel shuffling layers; (b) performed
qualitatively and quantitatively better than (a). (c) Detailed compositions of each block.
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However, downsampled μCT images cannot simulate clinical CT images perfectly because
the imaging conditions of μCT and clinical CT are different. For a specific tissues such as the
bronchus in clinical CT, intensity is around −500 to 200 H.U. On the other hand, the intensity of
the bronchus in μCT is around 6000 to 14,000 H.U. Furthermore, lung specimens for scanning
μCT images are resected from part of the lung, so the μCT images of lung specimens do not
contain anatomical information of the whole lung. Hence, we cannot simulate clinical CT per-
fectly by downsampling μCT images to the clinical CT scale. Therefore, in the future, we plan to
propose a new evaluation matrix for the evaluation of SR-CycleGAN.

5 Conclusion and Future Work

We proposed an unsupervised SR method named SR-CycleGAN. We also proposed an inno-
vative MMSR loss to ensure the SR image has similar anatomical structures and similar intensity
distribution as the input LR image. Additionally, we improved the network structure to obtain
both quantitatively and qualitatively better results. Experimental results demonstrate that our
method is suitable for the SR of a lung’s clinical CT to the μCT scale, while conventional
CycleGAN (without the proposed loss terms) outputs SR images with low qualitative and quan-
titative values.

Future work includes a more precise quantitative evaluation of our method. In addition, while
our method focused on the SR of clinical CT to the μCT scale, it is not limited to the specific SR
task of handling clinical CT for the lungs. Our method can also be applied to other SR tasks using
medical images as a processing target. Therefore, applying our method to new data will also be
among our future works. Since it is often difficult to register images from modalities with differ-
ent resolutions, we believe that SR methods with training by unpaired LR and HR images will be
essential and widely used in the near future.
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