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A robust ecosystem of scientists and engineers has facilitated recent progress in neuroscience
by development exciting and novel technologies to study the brain. These researchers include
optical engineers, protein and molecular engineers, roboticists, material scientists, computer sci-
entists and electrical engineers, actively working on multidisciplinary approaches to solve pre-
viously intractable problems. Over the past 10 years, the BRAIN Initiative1 has brought together
this ecosystem and has resulted in an explosion of tools available for neuroscience research.
A critical issue that determines long term adoption of any given technology is accessibility.
For technology to be used by neurobiologists, optimal strategies must be designed for broad
and easy dissemination.

The developers of molecular tools for neuroscience, such as calcium indicators,2,3 optoge-
netic pertubators,4–7 voltage indicators,8–12 optical neurotransmitter indicators13,14 and viral vec-
tors for anatomical tracing,15 have established robust infrastructures, such as core facilities
for effective dissemination of these tools for the research community. This is true for software
tools for behavioral16,17 and physiological data analysis18–20 as well, where the presence of online
repositories facilitate easy sharing.

The developers of hardware tools for neuroscience have often taken multipronged
approaches to technology dissemination. These include commercializing devices for efficient
and broad dissemination for example, silicon microfabricated probes21–24 and detailed methodo-
logical papers describing technical details for implementation beyond original research
articles.25–27 Other examples include using methodologies and techniques that do not require
specialized tools for fabrication.28,29 In recent years, there has also been an increased emphasis
on developing open-source tools that are designed for easy and efficient dissemination. Recent
examples of highly successful and broadly used neuroscience tools include tools for automated
cranial microsurgeries,27,30 automated and calibrated dispensing of feed in home cages31 and
systems for automated tetrode wire fabrication.32 Within the neurophotonics field, following the
work from Mark Schnitzer’s group in 2011,33 the development of open-source miniaturized
microscopes for imaging neural activity in freely behaving animals34,35 is one of the foremost
examples of how developing and dissemination open-source tools can benefit large swathes of
neuroscience. To this point, since its inception in 2016, the open-source UCLA Miniscope
Project (www.miniscope.org) has been widely adopted, with over 800 laboratories across at least
18 countries incorporating miniscopes into their research. To date, over 3000 miniscopes have
been built, facilitating a broad range of neuroscience studies in freely behaving animals. This
extensive use has resulted in more than 170 publications utilizing these tools, underscoring the
significant impact that open-source development and dissemination can have on advancing
neuroscience research. Beyond developing the tool, open-sourcing and freely sharing technical
knowhow can have significant impact beyond the original tools. For instance, the optical imaging
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sensor incorporated in the UCLA Miniscope V4 system has been used to innovate multiple
versions of miniaturized imaging systems that have smaller footprint,36 larger field of view
(FOV).37–39 Open-source newer versions of the sensor developed for higher speed, and higher
sensitivity imaging40 have already been incorporated into existing devices.41

Along these lines, we are pleased to present this special section on papers reporting open-
source tools developed for optically reading out or manipulating brain activity in humans, or
in model organisms, in healthy and in diseased states. The call for papers was broad—seeking
to highlight new advances in molecular tools—optical biosensors and optogenetics, optical devi-
ces for imaging and light delivery, data analysis and image reconstruction software, as well as
algorithms for quantitative behavioral analysis. Below we highlight some of the papers collected
in this special section.

Wide-field imaging of activity across the dorsal cortex has been increasingly used to reveal
how complex spatiotemporal mesoscale calcium dynamics mediate behavior.42–46 This special
section featured two papers on open-source tools for widefield imaging in rodents. Jose et al.
describe a mesoscope that uses cost-effective lenses and a CMOS camera and can perform high-
resolution structural and functional imaging over large areas of the cortex.47 This is comple-
mented by a paper by Doran et al.48 which describes a mesoscale imaging system capable
of imaging in two fluorescence channels and two reflectance channels. They showcase the sys-
tem by performing simultaneous large-scale spontaneous and stimulus-evoked neuronal, cholin-
ergic, and hemodynamic activity in awake, head-fixed mice.

The paper “Comprehensive software suite for functional analysis and synaptic input map-
ping of dendritic spines imaged in vivo” by Yu et al.49 discusses their open-source software pack-
age (AUTOTUNE) with detailed manual and user demos. While several open-source software
packages are widely used by neuroscientists for analysis of in vivo somatic activity, there is
currently a lack of available tools specifically for dendritic imaging analysis. AUTOTUNE assists
with dendritic analysis, with key features including robust semiautomated feature detection for
dendritic spines and branches, automatic feature alignment for recordings over multiple sessions,
spine turnover analysis, functional characterization of synaptic inputs by removal of back-
propagating axonal action potential signals, and the ability to generate event-triggered average
fluorescence traces. This well-documented open-source package will be useful for neuroscient-
ists to use right away for analysis of their experiments, or for further development and custom-
ization by programmers to add additional features

We have a paper reporting on new advancements in miniaturized neurophotonics interfaces,
focusing on extending neural activity recording capabilities in freely behaving animals. Greene
et al. present the EDoF-Miniscope,50 a fluorescence head-mounted microscope enhanced with a
diffractive optical element (DOE) to extend the depth-of-field for in vivo neural population
analysis. By optimizing the DOE through a genetic algorithm and integrating it into the optical
path of a miniature microscope, the system produces high-contrast signals without sacrificing
speed, resolution, or size. The EDoF-Miniscope demonstrates the ability to interrogate deeper
neuronal populations, making it a versatile and cost-effective tool for a range of neural recording
applications

In addition to the advancements in miniaturized neurophotonics, two papers in this special
section focus on critical methods for evaluating tools used in neuroscience imaging and analy-
sis. Saidi and Shtrahman present a systematic approach for evaluating the two-photon exci-
tation efficiency of compact pulsed lasers, offering a practical benchmark for researchers
working with two-photon microscopy.51 Their method simplifies the comparison of commer-
cial lasers and provides insights into the trade-offs between excitation efficiency and fluores-
cence output. Bridge et al. introduce FiPhA, an open-source platform designed to streamline
the analysis of fiber photometry data.52 This user-friendly tool offers powerful features for
event-triggered processing and quality control, helping researchers overcome the challenges
associated with photometry data analysis and making it easier to apply across various exper-
imental setups.

Crucial to applying miniaturized wired neural imaging devices is efficient mitigation of wire
entanglement due to the behavior of the animals. Oladepo and colleagues report on a simple,
computer-vision-guided robotic translating commutator that performs real-time markerless
tracking of animal movements and heading direction and automatically adjusts the angular
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orientation and position of an overhead signal commutator.53 They show that this system is
robust and easy to implement in a variety of behavioral assays. Finally, Kim et al. provide a
comprehensive review of how miniaturized neural imaging devices, traditionally used for im-
aging in mice are now being adapted for use in larger rodent models such as rats.54

This special section also included a paper on an open-source super-resolution imaging
microscope system (Open-STED).55 STED is an extensively used high-resolution imaging tech-
nique used in neuroscience and cell biology to visualize structures beyond the diffraction limit of
light. An issue with STED imaging is the high intensity of laser powers that are needed, which
result in high level of photobleaching and damage of sensitive tissue. Pierce and colleagues
report on the development of an open-source design for implementing the DyMIN technique
for modulating laser power. The DyMIN technique turns on the laser in only specific regions
of interest within the sample to mitigate photobleaching. This open-source DyMIN system is a
relatively easy add-on to existing STED imaging systems.

One key issue with neuroimaging as well as electrophysiology studies in humans is the
spatial registration of electrodes of optical sensors around the brain. Bálint et al.56 published
a technical study that evaluated the use of a commercial three-dimensional infrared scanner for
spatial registration of electrodes. They cross-validated their study using MRI imaging and
provide detailed guidelines for using the system under actual clinical conditions. This system
could result in a very efficient and cost-effective solution for this crucial issue in neuroimaging.
In another paper focused on non-invasive infrared imaging, Garrido-Peña et al.,57 use continuous-
wave near-infrared (CW-NIR) laser illumination protocol for modulating neuronal activity non-
invasively. They performed intracellular recordings of membrane potential while delivering sus-
tained and closed-loop CW-NIR laser stimulation and showed that sustained CW-NIR asymmet-
rically accelerated neuronal action potential dynamics and the spiking rates.

The publications highlighted in this special section on Open Source Tools and Techniques
show the breadth of research in neurophotonics that contributes to basic and translational neuro-
science. Future developments of imaging techniques, optical neuromodulation, software for
robust imaging data analysis, and methodologies to facilitate greater use of photonics technol-
ogies will continue to lead to exciting new discoveries and medical innovations. Open-source
science has allowed the creation and rapid dissemination of new photonics technologies to other
labs for use in their own research. Additionally, open collaborations among scientists in different
fields will continue to be important to generate new ideas to overcome current limitations and
lead to new breakthroughs in neurobiology.
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