Optical Engineering

SPIEDigitalLibrary.org/oe

Graphics processing unit-based
implementation of a one-dimensional
novel-look-up-table for real-time
computation of Fresnel hologram
patterns of three-dimensional objects

Min-Woo Kwon
Seung-Cheol Kim
Eun-Soo Kim

Optical Engineering 53(3), 035103 (March 2014)

Graphics processing unit-based implementation of
a one-dimensional novel-look-up-table for real-time
computation of Fresnel hologram patterns of

three-dimensional objects

Min-Woo Kwon, Seung-Cheol Kim, and Eun-Soo Kim*

Kwangwoon University, HoloDigilog Human Media Research Center, 3D Display Research Center, Department of Electronic Engineering,

447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea

Abstract. A one-dimensional novel-look-up-table (1-D N-LUT) has been implemented on the graphics process-
ing unit of GTX 690 for the real-time computation of Fresnel hologram patterns of three-dimensional (3-D)
objects. For that, three types of optimization techniques have been employed, which include the packing tech-
nique of input 3-D object data and the managing techniques of on-chip shared memory and registers.
Experimental results show that the average hologram calculation time for one object point of the proposed sys-
tem has been found to be 0.046 ms, which confirms that the proposed system can generate almost 3 frames of
Fresnel holograms with 1920 x 1080 pixels per second for a 3-D object with 8000 object points. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.0E.53.3.035103]

Keywords: computer-generated hologram; novel-look-up-table; sub-principal fringe patterns; graphics processing unit.

Paper 131591 received Oct. 18, 2013; revised manuscript received Jan. 23, 2014; accepted for publication Feb. 12, 2014; published

online Mar. 17, 2014.

1 Introduction

Thus far, a number of approaches to accelerate the computa-
tional time toward the real-time generation of computer-gen-
erated holograms (CGHs) have been proposed.'~'® One of
them is the look-up-table (LUT) method.! In this method,
a significant increase of the computational speed has been
obtained by precalculating all fringe patterns corresponding
to point-source contributions from each of the possible loca-
tions in the object volume, which are called elemental fringe
patterns (EFPs), and by storing them in the LUT. The great-
est drawback of this method, however, is the enormous
memory capacity for the LUT.!

Recently, a novel-LUT (N-LUT) to dramatically reduce
the required memory capacity along with maintaining the
fast computational speed was proposed.” In this approach,
a three-dimensional (3-D) object is approximated as a set
of discretely sliced object planes having different depths.
Then, only the fringe patterns for the center-located object
points on each object plane, which are called two-dimen-
sional principal fringe patterns (2-D PFPs), are precalculated
and stored in the N-LUT, so that the memory size of the
N-LUT could be reduced down to the order of gigabytes
(GB) from the order of terabytes (TB) of the conventional
LUT for the moderate 3-D object volumes.”

Basically, the memory capacity and the computational
speed are the most challenging issues in the conventional
N-LUT method. Therefore, several attempts to reduce the
memory capacity or to accelerate the computation time of
the N-LUT have been made for its practical application.’®

For further reduction of the memory, a new type of N-LUT
based on one-dimensional (1-D) sub-PFPs decomposed from

*Address all correspondence to: Eun-Soo Kim, E-mail: eskim@kw.ac.kr

Optical Engineering

035103-1

the conventional 2-D PFPs, which is called here 1-D N-LUT,
has been proposed.’ In this 1-D N-LUT method, the GB
memory of the conventional 2-D PFPs-based N-LUT,
which is called here 2-D N-LUT, could be dropped down
to the order of megabyte (MB) memory.’

In addition, for further reduction of the computational
time of the N-LUT, several software and hardware methods
have been proposed.*® That is, in those software approaches,
including the spatial redundancy-based N-LUT,* line redun-
dancy-based N-LUT,> block redundancy-based N-LUT,®
as well as the temporal redundancy-based N-LUT,” 3-D
object data to be calculated have been effectively reduced
by removing the spatial or temporal redundancy of the 3-D
objects by using various image compression algorithms.

Moreover, a couple of attempts to implement the conven-
tional 2-D N-LUT on a field programmable gate array or a
graphics processing unit (GPU) has been done.”'° But those
approaches were just trials to test the possibility of hardware
implementation of the N-LUT, so they could not show any
improvement in the computational speed.

Until now, the commercial GPU boards with highly par-
allel-computing architectures have been employed for accel-
erating the computational speed of several CGH generation
algorithms toward real-time applications.'!~'®

For the N-LUT algorithm, simultaneous loading of a set of
PFPs as well as the input 3-D object data onto the internal
memory of the GPU is needed for the calculation of Fresnel
hologram patterns, so that the memory and computing struc-
ture of the GPU must be carefully evaluated for efficient
implementation of the N-LUT on them. In this regard, the
conventional 2-D N-LUT requiring more than GB memory
for storing the 2-D PFPs may not be compatible with
the GPU having low-memory capacities. Furthermore, the
memory and computing structure of the GPU need to be

March 2014 « Vol. 53(3)

http://dx.doi.org/10.1117/1.OE.53.3.035103
http://dx.doi.org/10.1117/1.OE.53.3.035103
http://dx.doi.org/10.1117/1.OE.53.3.035103
http://dx.doi.org/10.1117/1.OE.53.3.035103
http://dx.doi.org/10.1117/1.OE.53.3.035103
http://dx.doi.org/10.1117/1.OE.53.3.035103

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

optimized for the fast algorithmic processing of the N-LUT
because of its limited memory capacity and bandwidth.

Accordingly, in this article, we implement the 1-D
N-LUT, maintaining a low-memory usage of megabytes,
on the commercial GTX 690 GPU board for the real-time
computation of Fresnel hologram patterns of 3-D objects.
For fast loading and accessing the sub-PFPs data of the 1-
D N-LUT and the 3-D data of the input object on the
GPU board, three types of optimization techniques are
employed, which include the packing technique of the
input 3-D object data for efficient storing in the on-chip
shared memory and the managing techniques of the on-
chip shared memory for fast computation of the CGH and
the on-chip registers for quick storing of the calculated holo-
gram data.

Additionally, experiments with three kinds of test 3-D
objects are carried out with the proposed GPU-based 1-D
N-LUT system, and the results are comparatively analyzed
with those of the conventional central processing unit (CPU)-
based 1-D N-LUT system in terms of the computational
speed.

2 Analysis of the 1-D and 2-D N-LUT Methods

2.1 Two-Dimensional N-LUT

As mentioned above, in the 2-D N-LUT method, the number
of fringe patterns to be stored in the N-LUT has been dra-
matically reduced by employing a new concept of 2-D PFP.
Geometry for generating the Fresnel hologram pattern of
a 3-D object is shown in Fig. 1 (Ref. 2).

Here, the location coordinate of the p’th object point is
specified by (xp, Yps zp), and each object point is assumed
to have an associated real-valued magnitude and phase of
ap, Pp, respectively. Also, the CGH pattern is assumed to
be positioned on the plane of z = 0.

Actually, a 3-D object can be treated as a set of 2-D object
planes discretely sliced along the depth direction of z. Each
object plane is approximated as a collection of self-luminous
object points of light. In this 2-D N-LUT method, only the
fringe patterns of the center points on each image plane are
precalculated, which are called 2-D PFPs, and stored in con-
trary to the LUT method in which the fringe patterns for all
possible object points, called 2-D EFPs, are precalculated

0,
s S
" Object point \
(X Yo 2) Hologram
plane

Fig. 1 Geometry for generating the Fresnel hologram pattern of
a three-dimensional (3-D) object.

Optical Engineering

035103-2

and stored. Therefore, the unity-magnitude 2-D PFP for
the object point (0,0,z,) positioned on the center of an
object plane with a depth of z,,, T(x,y;z,), can be defined
as follows:?

1
T(x,y;z,) Er—cos[krp + kx sin Og + ¢,]. (1)
)4

Here, the wave number k is defined as k = 2z /4, in which
A and 6y represent the free-space wavelength of the light
and the incident angle of the reference beam, respectively.
The oblique distance r, between the p’th object point
of (x,.y,.2,) and the point on the hologram plane of
(x,y,0) is given by

o= =52+ =y, + 8 @)

Then, the fringe patterns of other object points on same
object plane can be obtained by simply shifting this precal-
culated 2-D PFP.? Therefore, fringe patterns of all object
points located on the same object plane can be generated
by adding these shifted versions of the 2-D PFP, and the
final CGH pattern for a 3-D object can be obtained by over-
lapping all shifted versions of 2-D PFPs that are generated on
each depth-dependent object plane.

Therefore, the CGH pattern for a 3-D object I(x, y) in this
2-D N-LUT method can be expressed in terms of the shifted
versions of precalculated 2-D PFPs of Eq. (1), as shown in

Eq. (3).

N
I(x,y) :ZapT(x—xp,y—yp;zp), 3)
p=1

where N is the number of object points. Equation (3) shows
that the CGH pattern of a 3-D object can be obtained by just
shifting the 2-D PFPs depending on the displaced values of
the object points from the center object points on each object
plane and adding up them all.

Here, since the memory capacity of the 2-D N-LUT is
calculated to be on the order of GB even for the moderate
3-D object volume with image points of 320 x 240 x 256,
in which 320, 240, and 256 denote the number of pixels
in the horizontal, vertical, and depth directions, respectively,
this 2-D N-LUT may not be well matched with the commer-
cial GPU boards in terms of the computing and memory
structures, which means that we could not expect an
enhancement in the computational speed from this GPU-
based 2-D N-LUT system.

2.2 One-Dimensional N-LUT

In the 1-D N-LUT method, 2-D PFPs of the conventional
N-LUT can be decomposed into a pair of 1-D sub-PFPs
by using a simple trigonometric relation. Therefore, these
decomposed 1-D sub-PFPs, instead of the 2-D PFPs, are
stored in the 1-D N-LUT for the CGH calculation of the
3-D object, from which a remarkable memory reduction
of the 1-D N-LUT down to the order of MB could be
obtained.?

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

k
T(x,y;2,) = cos L—(sz +Ay*+ zf,)}

P

2 A 2 2} 2
—cos k(S 42 4l 2
Z Zp 2 2
A 2 2 A 2 }2
g)
z, 2 z, 2
A 2 2 A 2 2
—eont (3o (243
7z, 2 z, 2
Ax? 2 AY? 2
—sin[k(—xﬁ—”ﬂsin{k(—yﬁ—")], 4)
z, 2 z, 2

where Ax =x—x, and Ay =y—y,. As you can see in
Eq. (4), a 2-D PFP can be simply calculated by using a
pair of 1-D sub-PFPs according to the trigonometric relation.

Figures 2(a) and 2(b) show a 2-D PFP and its 1-D version
of a pair of sub-PFPs for a specific depth plane. For 256
depth layers, 256 1-D sub-PFPs are stored in the 1-D
N-LUT, whereas the same number of 2-D PFPs is stored
in the 2-D N-LUT.

For memory comparison, here we assume a 3-D object
composed of plane images sliced with 256 levels along
the depth direction, in which each plane image has a reso-
lution of 320 X 240. In addition, the resolution of the CGH
pattern to be generated is assumed to be 1920 x 1080 pixels,
in which each pixel size is 10 X 10 um?. Also, it has been
well known that the human visual system usually sees as
continuous two points that are separated by 3 mrad of
arc. Therefore, if the viewing distance is assumed to be
100 mm from the image plane, then the separation between
two object points becomes 30 pm (100 mm X 0.003 =
30 um).! Thus, the pixel size of hologram pattern of
10 um corresponds to the shift of 3 pixels. In other words,
to display the two neighboring points to be seen as continu-
ous, the PFP should be shifted by 3 pixels.?

Hence, to fully display the CGH pattern, the 2-D
PFP must be shifted by 960 (320 x 3 =960) and 720
(240 x 3 = 720) pixels along the horizontal and vertical
directions, respectively, which means that the resolution of
a 2-D PFP becomes 2880 x 1800 pixels, as seen in Eq. (5).

% N\

A Z
(@ (b)

Fig. 2 Two-dimensional (2-D) PFP and its one-dimensional (1-D
version of sub-PFPs: (a) 2-D PFP, and (b) 1-D sine and cosine
sub-PFPs for a specific depth plane.

=

Optical Engineering

035103-3

Horizontal resolution of the 2-D PFP(2880)
= horizontal resolution of the 3-D object(320)
X intervals of the reconstructed image point(30)/
pixel pitch of the hologram(10)
+ horizontal resolution of the CGH(1920)
Vertical resolution of the 2-D PFP(1800)
= vertical resolution of the 3-D object(240)
X intervals of the reconstructed image point(30)/
pixel pitch of the hologram(10)
+ vertical resolution of the CGH(1080). 3)

Therefore, the total memory capacity of the 2-D N-LUT is
calculated to be 1.2 GB, as shown in Eq. (6).

Total memory capacity of the 2-DN-LUT(1.2 GB)
= horizontal resolution of the 2-D PFP(2880)
X vertical resolution of the 2-D PFP(1800)
X depth resolution of the 3-D object(256). (6)

On the other hand, in the 1-D N-LUT method, to fully
display the sub-PFP for the 3-D object volume having a res-
olution of 320 X 240 x 256 pixels, the 1-D PFP must be
shifted by 960 (320 X3 = 960) and 720 (240 x 3 = 720)
pixels along the horizontal and vertical directions, respec-
tively. Thus, the resolution of a 1-D sub-PFP becomes
2880 (960 + 1920 = 2880) pixels, and as a result, the
total memory capacity of the 1-D N-LUT is calculated to
be 1.4 MB, as seen in Eq. (7).

Total memory capacity of the 1-DN-LUT(1.4 MB)
= resolution of the 1-D PFP(28380)
X the number of 1-D PFPs(2)
X depth resolution of the 3-D object(256). @)

Accordingly, the memory size of the 1-D N-LUT has
found to be almost 103-fold smaller than that of the conven-
tional 2-D N-LUT.

3 Compatibility of the 1-D N-LUT with the GPU

3.1 Memory Capacity

In the N-LUT-based CGH generation method, a set of PFPs
for the 3-D object must be precalculated and stored for
calculation of the CGH patterns. That is, the N-LUT method
needs a simultaneous loading of a set of PFPs as well as
the input object data on the internal memory of the GPU.
Basically, the memory size for the PFPs would be much larger
than that for the object data, which means that the memory
structure of the commercial GPU board must be carefully
evaluated for efficient implementation of the N-LUT on it.
Since a new type of N-LUT called 1-D N-LUT, which can
maintain a low-memory usage of megabytes as well as operate

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

Table 1 Global memory specifications of various commercial GPUs.

General-purpose GPU Professional GPU

GTX GTX GTS GT Quadro

690 580 450 640 6000 TeslaK10
GDDR5 2 1.5 1 2 6 8
memory
(GB)

on the 1-D data structure, is well matched with those of the
commercial GPUs, here in this article, the 1-D N-LUT is
employed for its implementation on the GPU board.

Table 1 shows the GDDRS (graphics double data rate,
version 5) memory specifications in various commercial
GPUs.'"" Here, the GDDRS5 SDRAM is a type of high-
performance DRAM graphics memory card designed for
the computer applications requiring a high bandwidth, which
is the largest memory in the GPU called “global memory.”
Therefore, in the 1-D N-LUT method, sub-PFPs and object
data may be stored in this global memory of GDDRS5
SDRAM.

For example, the general-purpose GPU of GTX 690 and
the professional GPU of Quadro 6000 have the global
memories of 2 and 6 GB, respectively, as seen in Table 1.

Moreover, Fig. 3 shows the memory size dependence on
the resolution of the input object in both the 1-D and 2-D
N-LUT methods, in which the resolution of the hologram
to be generated is assumed to be 1920 x 1080.

For the 3-D object volume having image points of
300 x 300 x 256, the total memories required in the 1-D and
2-D N-LUTs are calculated to be 1.38 MB and 1.33 GB,
respectively. Moreover, they become 3.87 MB and 13.37 GB
for each case of the 1-D and 2-D N-LUTs for the 3-D object
having the image points of 2000 X 2000 x 256. These results
reveal that as the resolution of the input object increases, the
corresponding memory size for the 2-D N-LUT gets sharply
increased according to the square-law on the GB range,
whereas it may linearly increase on the MB range in the
1-D N-LUT.

50

—=—2-DN-LUT
——1-DN-LUT
40 |
o 30k
&)
X
@ g0k
2
=}
=)
[}
= 10k
’V/ L
o]
0002 Fyy oo ae—ee— T
0.000 > 1 1 n 1 1 1 1 1

0 500 1,000 1.500 2,000 2,500 3,000 3,500 4,000

Input image resolution (pixels)

Fig. 3 Memory size dependence on the resolution of the input object
in both the 1-D and 2-D N-LUTs.

Optical Engineering

035103-4

Even for the 3-D object volume having image points of
4000 x 4000 x 256, only 6.8 MB memory is required for the
1-D N-LUT, which is the sufficient amount of memory to be
fully stored in the global memories of the GTX GPU series
with the maximum memory size of 2 GB. In other words, the
1-D N-LUT looks highly compatible with the commercial
GTX GPU series, so that one of the general-purpose GPU,
the GTX 690 GPU, has been chosen here for implementation
of the 1-D N-LUT on it.

3.2 Memory Structure

In fact, the 1-D N-LUT has been developed for its implemen-
tation on the commercial GPU boards.® That is, contrary to
the conventional 2-D N-LUT, the memory and computing
structures of the 1-D N-LUT are well matched with those
of the GTX 690 GPU."

Generally, a GPU board supports several types of memo-
ries that can be used by programmers to achieve a high
performance and thus a high-execution speed in their
kernels. Figure 4 shows the memory structure and compute-
unified-device-architecture (CUDA) thread organization of
the GTX 690 GPU.!” Here, in the CUDA thread organiza-
tion, the thread characterizes the fundamental means of
parallel execution in CUDA, and each block is composed of
a group of threads. Moreover, the global memory shown at
the bottom of Fig. 4 is written and read by the host by calling
application programming interface functions, but it has
problems of long latency and limited bandwidth.

Hence, the GTX 690 GPU also supports the on-chip
short-latency shared memory and registers. As shown in
Fig. 4, variables that reside on those memories can be
accessed at the very high speed in a highly parallel manner.

Although these on-chip shared memory and registers can
be effectively used for the reduction of the access number to
the global memory, one must be careful not to exceed the
capacity of these memories. Each GPU device offers a lim-
ited amount of GPU memory, which may limit the number of
threads that can be simultaneously resided in multiprocessor
for a given application.”’

For the GTX 690 GPU board employed in this article, the
total amount of shared memory per block (SMPB) and the
total number of registers available per block are 49,152 bytes
(48 kB) and 65,536 bytes (64 kB), respectively.'’

4 GPU-Based Implementation of the 1-D N-LUT

4.1 Ordinary Implementation

Figure 5 shows a basic software structure and pseudocode
for implementation of the 1-D N-LUT on the GTX 690
GPU board using the global memory, which is called here
“Ordinary GPU-based 1-D N-LUT system.” It largely con-
sists of three parts: Input, Calculation, and Output parts. That
is, in the Input part, x, y, z coordinates and intensity data
extracted from the input 3-D object and sub-PFPs of the
1-D N-LUT are stored in the global memory of the GPU
board. In the Calculation part, GPU kernel functions are
invoked to load x, y coordinates and intensity data and
sub-PFPs for specific z depth from the global memory
and to calculate the CGH pattern. Furthermore, in the
Output part, the calculated CGH pattern is saved and the
GPU kernel cumulates the calculated CGH patterns to

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

Block(0,0)

Block(1,0)

Shared memory

Shared memory

A A A A
Register Register Register Register
memory memory memory memory 000
Host ¢ ¢ i i
v v v v
Thread(0,0) Thread(1,0) Thread(0,0) Thread(1,0)

A A

A A

\ 4

Global memory

Fig. 4 Memory structure of the GTX 690 GPU board.

the global memory. Right after these CGH calculations are
completed for all depth layers, the host computer loads the
cumulated CGHs from the global memory and then the main
program may end.

Actually, this basic software structure based on the global
memory of the GPU board has been employed in a couple of
conventional GPU-based CGH generation methods.'""!?
However, in this software structure of the ordinary GPU-
based system shown in Fig. 5, the fast-accessible on-chip
shared memory and registers of the GTX 690 GPU board
may not be well managed for accelerated CGH calculations;
s0, an optimization process for efficient utilization of them is
needed. Figure 5 shows the potential bottlenecks (©, @, and
®) of this ordinary GPU-based system. That is, if the GPU
program is implemented only with the global memory, then it
may experience a traffic jam in loading and accessing the
memory data, which may result in a degradation of the sys-
tem performance.

In particular, since a large sub-PFPs data as well as the
small object data are simultaneously stored in the global
memory of the GPU board from the host in the ordinary
GPU-based system as shown in ® and @ of Fig. 5, a kind
of traffic jams between the global memory and the threads
in the GPU may happen whenever the data are accessed,
because the global memory has the long-access latency as
well as the limited memory bandwidth. Moreover, whenever
the threads store the calculated results as shown in ® of
Fig. 5, multiple write operations may occur between the
threads and the global memory. It also causes the degradation
of the system performance.

Accordingly, if we can alleviate those bottlenecks men-
tioned above, then the computational speed of the ordinary
GPU-based system expects to be much enhanced. Therefore,
in this article three types of optimization techniques for data
loading and accessing in the GPU board are proposed. These
will be discussed in detail later.

Main function

HOST GPU
Global Invoked Kernel
Memory for each z
Load x.,y,z. ol @ . Loaq =0
. L d, } ——————> intensity data intensity data
E. intensity data of all depths of z depth
S /
= Load sub-PFPs @ Load
sub-PFPs of ————— > of all > sub-PFPs
all depths depths of z depth
N ' v
g‘ l Calculate
S Invoke kernel CGH for
i for each each
= depth hologram
i} pixel
S
]
3 s
S.L‘ Save CGH as CGH | @
S — <«
& a file]
S

Load x,y,z and intensity data of 3-D object
Arrange x,y and intensity data for each z depth
Store x,y and intensity data of all depths in global memory
Load sub-PFPs
Store sub-PFPs in global memory
For each z depth
Invoke kernel function
End for loop
Load CGH from global memory
End function

Kernel function
For each x,y and intensity data in specific depth
Load x,y and intensity data and sub-PFPs of specific depth
Calculate CGH
Cumulate CGH to global memory
End for loop
End function

Fig. 5 Basic software structure and pseudocode of the ordinary GPU-based 1-D N-LUT system.

Optical Engineering

035103-5

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

Mansion & Bus

Camera Car

- -

Fig. 6 Intensity and depth images of the test objects of “Camera,”
“Car,” and “Mansion & Bus.”

Intensity
images

Depth
images

Here, the ordinary GPU-based 1-D N-LUT system
employing the basic software structure of Fig. 5 is first
implemented, and experiments are carried out for compari-
son. Intensity and depth images of three test 3-D objects are
shown in Fig. 6, which are used as the input object data
for the generation of its CGH pattern on the implemented
ordinary GPU-based system. In the experiments, three test
objects of “Camera,” “Car,” and “Mansion & Bus” with
the same 3-D object volume of 320 x 240 x 256 pixels are
assumed to have object points of 3021, 9944, and 19,984,
respectively. Moreover, the CGH pattern to be generated
is assumed to have a resolution of 1920 x 1080 pixels, in
which each pixel size is 10 X 10 ymz, and the horizontal
and vertical discretization steps of less than 30 um are chosen
since the viewing distance is fixed to be 100 mm in the
experiment.

With these test object data and corresponding sub-PFPs,
CGH patterns are calculated by using the implemented ordi-
nary GPU-based 1-D N-LUT system. For comparison, the
same calculations are also performed with the conventional
CPU-based 1-D N-LUT system. Here, the computer system
used in the experiment is composed of an Intel i7 3770 CPU,
an 8 GB RAM, and a GTX 690 GPU of NVIDIA, and it
works on the CentOS 6.3 Linux platform. Basically, even
though the GTX 690 GPU board is composed of two

GTX 680 GPU boards, only one GTX 680 GPU board is
employed in our experiment for just verifying the compati-
bility of the 1-D N-LUT with the GPU. Moreover, we use
only one CPU thread, in which this CPU was not used
for CGH calculations but for controlling the software struc-
ture such as loading the input images and N-LUT, controlling
the GPU kernels, and saving the output holograms.

Experimental results show that the average calculation
times for one object point in the implemented ordinary
GPU-based and the conventional CPU-based systems are
estimated to be 0.143 and 11.956 ms, respectively. Here,
the average calculation time for one object point of the
ordinary GPU-based system has been found to be 83-fold
improved compared with that of the conventional CPU-
based system, but these results may say that the implemented
ordinary GPU-based system still needs a further improvement
in the computational speed for the real-time applications.

4.2 Proposed Implementation

Figure 7 shows an overall software structure and pseudocode
of the proposed GPU-based 1-D N-LUT system, which is
called here “Proposed GPU-based 1-D N-LUT system.” In
the proposed system, three types of optimization techniques
to efficiently manage the on-chip shared memory and
registers of the GPU board are suggested for solving the
bottlenecks of the ordinary GPU-based system. Here, the
optimization techniques may depend on the employed CGH
generation algorithms,'®*""> so, in this article, new types of
memory managing techniques properly optimized to the 1-D
N-LUT are proposed.

As shown in Fig. 7, in the Input part, the 3-D object data
are packed together for efficient storing as much object data
as possible in the on-chip shared memory. In the Calculation
and Output parts, two memory managing techniques for
utilizing both the fast-accessible on-chip shared memory
and registers are used. These optimization techniques may
improve the performance of the proposed GPU-based 1-D
N-LUT system.

HOST GPU Main function
Global » Shared Register 1 Invoked Kemel Load x,y,z and in'tensity'/ data of 3-D object
Memory Memory Memory for each z Arrange x,y and intensity data for each z depth
i Pack x,y and intensity data for each z depth
Load x,y,z, Miackay, [Packed [} [Packed _ Loadxy, Store packed data of all depths in global memory

- . A —» intensity data P> x.y,intensity | — x,y,intensity intensity data

é intensity data for each z depth of all depths '\ ofzdepth of z depth Load sub-PFPs
= i Store sub-PFPs in global memory

§ Load sub-PFPs sub-PFPs Load For each z depth .
= | sub-PFPs of > ofall |— ; > sub-PFPs Invoke kernel function

all depths depths Shzlceet of z depth End for loop

N l v Load CGH from global memory

2, v Calculate End function

g Invoke kernel Cf:(l:hfor
§ fc:ire:‘:;h o Kernel function -

s pixel Store packed data of specific depth to shared memory
S Store sub-PFPs of specific depth to shared memory
© For each packed data
§ v Load x,y and intensity data and sub-PFPs of specific depth

] \ CGH \ Calculate CGH
§ Savz%il{ S CCLER N . dﬁ:‘h b Cumulate CGH to register memory
s 2 End for loop
S Store cumulated CGH to global memory

) End function

Fig. 7 Overall software structure and pseudocode of the proposed GPU-based 1-D N-LUT system.

Optical Engineering 035103-6 March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

4.2.1 Operational design of the proposed system

In this article, the GPU board calculates the CGH at a high
speed in parallel by using the CUDA. The CUDA is a par-
allel-computing platform and programming model invented
by the NVIDIA. It enables a dramatic enhancement of
computing performance by harnessing the power of the
GPU. In the CUDA, the computing performance of the
GPU depends on the occupancy of the GPU cores. In other
words, it may depend on how efficiently the GPU cores in
parallel are used.

In this article, each thread of the GPU board calculates
each pixel of the CGH. That is, a parallel-processing algo-
rithm can be implemented based on each pixel of the CGH.
Figure 8 shows how to perform the parallel processing based
on each pixel of the CGH, in which “Hologram cols” and
“Hologram rows” represent the column and row sizes of
the CGH pattern, respectively. That is, one thread is allocated
to one pixel of the CGH and several threads are grouped by
a block.

Here, occupancy of the GPU cores is calculated by using
the “CUDA GPU Occupancy Calculator (CGOC).”>* Input
parameters of the CGOC include “threads per block (TPB),”
“registers per thread (RPT),” and “shared memory per block
(SMPB).” In the CGOC, occupancy of the GPU is evaluated
by the ratio between the active number of “warps per multi-
processor (WPM)” and the maximum number of WPM, in
which the maximum number of WPM is 64 and the active
number of WPM is obtained by multiplication of the number
of “warps per block (WPB)” to the number of “active block
(AB).” Here, the WPB is evaluated by dividing the TPB with
the “threads per warp (TPW),” in which the TPW is 32.

To get 100% occupancy of the GPU cores, the TPB, RPT,
and SMPB are determined to be 512, 19, and 12,288, respec-
tively. Here, the AB can be calculated with each of the TPB,
RPT, and SMPB.” That is, if the TPB is 512, the AB is
calculated to be 4(64/16 = 4) through division of the maxi-
mum number of WPM by the number of WPB. For the
case if the RPT is 19, AB is then calculated to be 5(84/16 =
5.25) by dividing the “registers per multiprocessor (RPM)”
with the “registers per block (RPB).” Moreover, if the
SMPB is 12,288, then the AB is also calculated to be
4(49,152/12,288 = 4) through division of the “shared
memory per multiprocessor (SMPM)” by the SMPB, in
which the SMPM is 49,152.

Hologram cols

smol weI3o[oH

: block : thread

Fig. 8 Block thread-based parallel processing of the CGH.

Optical Engineering

035103-7

Since the CGOC may select the smallest value of the AB
among three cases derived above, the AB is finally deter-
mined to be 4. Therefore, the value of active number of
WPM is calculated to be 64(16 X 4 = 64) through multipli-
cation of this AB value to the WPB. Then, the active and the
maximum numbers of WPM become exactly the same, and
this result confirms 100% (64/64 x 100 = 100) occupancy
of the GPU. These calculations explained above are auto-
matically performed by using the CGOC (CUDA GPU
0OC).” In short, the proposed GPU-based 1-D N-LUT sys-
tem has been designed to work with 100% occupancy of
the GPU cores as well as to secure the maximum space of
the on-chip shared memory for simultaneous loading of x, y
coordinates and intensity data extracted from the input 3-D
object and the sub-PFPs data for specific z depth.

4.2.2 Optimization of the input part

In the ordinary GPU-based 1-D N-LUT system, x, y, z
coordinates and intensity data extracted from the input 3-
D object as well as the sub-PFPs data are stored in the global
memory of the GTX 690 GPU. On the other hand, in the
proposed system as shown in Fig. 7, both of them are stored
in the global memory temporary and in the on-chip
shared memory, whenever the CGH calculation operation
starts.

Here, in order to maintain the designed 100% occupancy
of the GPU cores, the SMPB must be kept to not larger than
12,288 bytes (49,152/4 = 12,288) as discussed above.
For the 3-D object volume with object points of 320 x 240 X
256 and the CGH pattern with a resolution of 1920 X
1080 pixels, the resultant memory size of a pair of sub-
PFPs for specific z depth is calculated to be 5760 bytes
(2880 x 2 = 5760). Then, for loading these sub-PFPs data
of 5760 bytes onto the on-chip shared memory by using
512 threads in parallel, 6144 bytes of the shared memory,
which is the multiple numbers of 512, must be needed.
Therefore, the remaining portion of the shared memory of
6144(12,288 — 6144 = 6144) bytes can be allocated for
loading x, y coordinates and intensity data extracted from
the input 3-D object for specific z depth.

Accordingly, in the proposed system, to store as many of
these data as possible in this limited on-chip shared memory,
combined packing scheme of 3-D object data is proposed. In
the 1-D N-LUT method, a set of sub-PFPs corresponding to
each depth layer is provided for the calculation of the CGHs
of the 3-D object. The GPU kernel function may be invoked
in relation to the depth layer, so that the x, y coordinates and
intensity values can be arranged together as tables for each
depth layer having their z coordinate values.

Here, the input object data are packed in the 32-bit
memory, in which x, y coordinate values and the intensity
value are allocated to 24-bit and 8-bit of the memory, respec-
tively. By using this packing scheme, the input image data for
one object point could be reduced down to 4 bytes from 12(4 x
3 = 12) bytes because x, y coordinate values and the intensity
value can be carried only by one 32-bit (4 bytes) memory.

4.2.3 Optimization of the calculation part

Compared with the ordinary system, in which x, y, z coor-
dinates and intensity data extracted from the input 3-D object
and 1-D sub-PFPs are stored on the global memory as shown
in Fig. 5, the proposed system utilizes the on-chip shared

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

) :— <Packed input data> ll— <1-D sub-PFPs> | <CGH> |
o 31 19 7
g I ™ [0] | e o e | |
T 9 I
E L X2 Y2 l I l |
= | = 5 | o
o | | ® V3 ‘ I | |
S g I I l
O lx [[u]] | !
N A A A
| <Shared memory>
| q A L o [T % -5 :
a
ORI T | g MET TR U
S | = = = e 2 o |1
21 F FF - Ny
| —|—>‘ X3 Y3 ‘ I3 I
i | |
| ST]
| |
o=t [
b e e e e e e o — — — — — — — — — — — — —
(a)

Global memory

Block

ﬁ"ﬂ"ir_'_"l""_"fl |

Thread 512

Fig. 9 Parallel storing of the sub-PFPs and the packed input object data to the on-chip shared memory:
(a) storing of sub-PFPs, and (b) storing of the packed input object data.

memory to fast access these data to the threads for acceler-
ated computation of the CGH in the Calculation part, as
shown in Fig. 7. That is, the threads load the packed x, y
coordinates and intensity data extracted from the input
3-D object and the sub-PFPs for specific z depth from the
global memory and save them onto the shared memory in
parallel. Figure 9 shows the parallel loading process of
these data from the global memory and saving them onto
the shared memory.

Figure 10 shows the implemented code for the calculation
of the CGH pattern with the 1-D N-LUT. Here,
“PACKED_DATA” means the packed object data loaded
from the shared memory, which consist of x, y coordinates
and intensity values packed as one integer variable. Using
a bit operation of the C-language, these three values
can be obtained as shown in Fig. 10(b). “PFP_X" and
“PFP_Y,” representing the x, y coordinate values of the
1-D sub-PFP, respectively, can be obtained by using the
“MAGNIFICATION,” which is 3 pixels, and “OBJECT_X”
and “OBJECT_Y” denote the x, y coordinate values of the
input object, as shown in Fig. 10(b).

Then, “cos _X,” “cos_Y,” “sin _X,” and “sin_Y” repre-
senting four terms of the last line in Fig. 10(a), are obtained
by using “COS_subPFPs,” and “SIN_subPFPs,” which are
a pair of 1-D sub-PFPs loaded from the shared memory.

k (Ax2 +AY? +2
Zp

T(x,y;zp)=cosl:

;ﬂ

Based on the equation of Fig. 10(a), “HOLOGRAM”
denoting the CGH can be finally obtained, in which
“HOLOGRAM_INDEX” means the index of the CGH.

4.2.4 Optimization of the output part

Since in the ordinary GPU-based system, each thread calcu-
lates one pixel of the hologram and directly cumulates
its result on the global memory, a tremendous number of
read-write-operations may occur between the threads and
the global memory. Therefore, in the proposed system, for
accelerated accumulation of the calculated CGH pattern,
the on-chip registers are used for storing the calculated
CGH, as shown in Fig. 7.

That is, each thread calculates the CGH with x, y coor-
dinates and intensity data extracted from the input 3-D object
and the sub-PFPs for specific z depth and cumulates
the results on the registers. In case of calculations for one
depth layer end, each thread saves the cumulated results
onto the global memory. Therefore, the number of read-
write-operations between the threads and the global memory
can be significantly reduced.

In the ordinary GPU-based system mentioned above, the
number of read-write-operations between the threads and the
global memory to cumulate the calculated CGH pattern is
given by Eq. (8).

intensity = (PACKED_DATA&OXFF);
OBIJECT_X = (PACKED_DATA>>8)&0xFFF);
OBIJECT_Y = (PACKED_DATA>>20)&0xFFF);

PFP_X = MAGNIFICATION * OBJECT_X + HOLOGRAM_X;
PFP_Y = MAGNIFICATION * OBJECT_Y + HOLOGRAM_Y;

cos_X = COS_subPFPs[PFP_X];
cos_Y = COS_subPFPs[PFP_Y];
sin_X = SIN_subPFPs[PFP_X];
sin_Y = SIN_subPFPs[PFP_Y];

HOLOGRAM[HOLOGRAM_INDEX] += ((cosX*cosY-sinX*sinY)*intensity);

(b)

Fig. 10 Implemented code for calculating the CGH with the 1-D N-LUT: (a) equation of 2-D PFP by using
a pair of 1-D sub-PFPs, and (b) implemented code.

Optical Engineering

035103-8

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

NGmem_ordinary_system = NObject X NDeplhv (8)

where Ny and Npepp, mean the numbers of input object
points and depth layers, respectively. On the other hand, in
the proposed GPU-based system, the number of read-write-
operations between the threads and the global memory to
cumulate the calculated CGH pattern can be given by Eq. (9).

NGmem_optimized_system = NDepth~ (9)

Therefore, it has been found from Egs. (8) and (9) that
the number of read-write-operations between the threads and
the global memory to cumulate the calculated CGH pattern
in the proposed method only depends on the number of depth
layers regardless of the number of input object points,
whereas it may depend on both the number of depth layers
and the number of input object points in the ordinary method.

5 Experimental Results and Discussions

5.1 CGH Calculation Time

Figure 11 shows the comparison results of the reconstructed
test object images from the CGH patterns generated by each
of the conventional CPU-based, the ordinary GPU-based,
and proposed GPU-based 1-D N-LUT methods for three
test objects of “Camera,” “Car,” and ‘“Mansion & Bus.”
Here in the experiments, off-axis reference lights were
used for reconstruction of the object images without having
direct and conjugate beams. As you can see in Fig. 11, all
object images have been successfully reconstructed and
visually look very well.

Table 2 shows the results of the average total CGH cal-
culation times and the average CGH calculation times for
one object point for each method. As seen in Table 2, the
average CGH calculation times for one object point are
estimated to be 11.956, 0.143, and 0.046 ms, respectively,

Reconstructed
'Camera' image

Conventional
CPU-based
system

Ordinary
GPU-based
system

Proposed
GPU-based
system

Reconstructed
'Car' image

for each case of the conventional CPU-based, the ordinary
GPU-based, and the proposed GPU-based systems. In other
words, the proposed GPU-based system has obtained 260
and threefold improvement of the average CGH calculation
time, respectively, compared with those of the conventional
CPU-based and the ordinary GPU-based systems.

Here, the total CGH calculation time for the test 3-D
object of “Car” with 9944 object points is calculated to
be 446 ms in the proposed system, which means that the pro-
posed system can generate 2.24 frames of the CGH patterns
with 1920 x 1080 pixels per second.

These results may confirm the feasibility of the proposed
GPU-based system in the practical applications. Moreover,
the performance of the proposed system could be further
improved through massive reduction of the input 3-D object
data by employing a concept of spatial and temporal redun-
dancies as well as by multi-GPU-based implementation.

Figure 12 shows the total CGH calculation time depend-
ence on the number of object points for each case of the
conventional CPU-based, the ordinary GPU-based, and
the proposed GPU-based 1-D N-LUT methods, in which
the CGH resolution is set to be 1920 x 1080 and the number
of object points is changed from 1 to 25,000.

For an input object volume with 10,000 object points, the
total CGH calculation time of the proposed system has been
improved by 99.64% and 68.53% compared with those of
the conventional CPU-based and the ordinary GPU-based
systems, respectively. The results on the total calculation
times for three test objects of “Camera,” “Car,” and
“Mansion & Bus,” as shown in Table 2, are also included
in Fig. 12. As seen in Fig. 12, the results of Table 2 have
been well matched with those of Fig. 12.

From Fig. 12, the total CGH calculation time for a 3-D
object volume having 8000 object points has been estimated
to be about 0.36, 1.10, and 94.71 s in the proposed, the ordi-
nary, and the conventional CPU-based systems, respectively,

Reconstructed
'Mansion & Bus' image

Optical Engineering

Fig. 11 Comparison of input images and results on the reconstructed test object images from the con-
ventional CPU-based, the ordinary GPU-based, and the proposed GPU-based 1-D N-LUT methods.

035103-9

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

Table 2 Comparison results on the total CGH computation times and the average calculation times for one object point of each system for three

test objects.

Test object (number
of object points)

Implementation method

Total calculation
time (ms)

Calculation time for

one point (ms)

Conventional CPU-based Camera (3021)

36,113 (100%)
457 (1.27%)
146 (0.40%)

11.954 (100%)
0.151 (1.27%)
0.048 (0.40%)

118,861 (100%)
1384 (1.16%)
446 (0.38%)

11.953 (100%)
0.139 (1.16%)
0.045 (0.38%)

GPU-based Ordinary

Proposed
Conventional CPU-based Car (9944)
GPU-based Ordinary

Proposed
Conventional CPU-based Mansion & bus (19,984)
GPU-based Ordinary

Proposed

239,056 (100%)
2751 (1.15%)
871 (0.36%)

11.962 (100%)
0.138 (1.15%)
0.044 (0.36%)

which means that the proposed system can generate 3 frames
of the CGH patterns with 1920 x 1080 per second, whereas
the ordinary GPU-based and the conventional CPU-based
systems can generate 1 and 0.01 frames of the CGH patterns
per second, respectively.

5.2 Achieved Occupancy of the GPU Cores

The NVIDIA Visual Profiler can be used for showing the real
occupancy value of the multiprocessor, which is called here
“achieved occupancy (AO).” The AO of the proposed GPU-
based system has been found to be 90.6%, which means
that the proposed system may operate with 90.6% of the
GPU cores. As discussed above, the proposed system has
been designed to work with 100% occupancy of the GPU
cores, but its real value in the implemented system has
been evaluated to be a little bit lower than that. But this
value of the AO may be generally acceptable in the real-
application fields.”*

300 -

—*— Conventional CPU-based
—*— Ordinary GPU-based
—*— Proposed GPU-based

I8

[

S
T

2 200 | //'
N
o O : Camera
E 150 .
= Q :Car
g /\ : Mansion and bus
qg 100 |
=
Q
T‘d 50
—
Lt p2
-
3 N
o
2 s —e—r—
. T e e T
0 2223 T i i . I H
0 5,000 10,000 15,000 20,000 25,000

Number of object points

Fig. 12 Results of calculation performance according to the number
of point and input objects.

Optical Engineering

035103-10

5.3 Occupancy of the GPU Cores Depending on
the Shared Memory

Figure 13 shows the occupancy of the GPU cores depend-
ence on the shared memory size. As seen in Fig. 13, if
the size of the shared memory for x, y coordinates and inten-
sity data extracted from the input 3-D object and sub-PFPs
data for specific z depth increases in the proposed system,
then the occupancy of the GPU cores tends to be sharply
decreased even though the available shared memory space
for loading these data increases.

That is, if the shared memory size to be used for these data
gets increased up to 16,384, 24,576, and 30,000 bytes, exceed-
ing its upper limit of 12,288 bytes for maintaining the designed
100% occupancy of the GPU cores, then the corresponding
AB values decrease down to 3(49,152/16,384=3),
2(49,152/24,579 = 2), and 1(49,152/30,000 = 1.64),
respectively. Then, their active numbers of WPM values
also reduce to 48(16x3 =48), 32(16 x2 =32), and
16(16 x 1 = 16), respectively, which finally results in

120

110} I
[112,288 bytes
i '

—
o
S

|

©
S
T

sor {16,384 bytes

70} . :
60 L\ :
sol- P 7_7_7%24:576 bytes

_ it

30 \

Occupancy of the GPU cores (%)

" 1 n 1 bt 1 n 1 n
0 10,000 20,000 30,000 40,000 50,000

Shared memory size (bytes)

Fig. 13 Occupancy of the GPU cores dependence on the shared
memory size.

March 2014 « Vol. 53(3)

Kwon, Kim, and Kim: Graphics processing unit-based implementation of a one-dimensional novel-look-up-table. . .

occupancy reduction of 75% (48/64 x 100 = 75), 50%
(32/64 x 100 = 50), and 25% (16/26 x 100 = 25),
respectively.?>*

That is, the more we use the on-chip shared memory of
the GPU board, the more we can store the input object and
sub-PFPs data in this on-chip shared memory. On the other
hand, the corresponding occupancy of the GPU cores may
sharply decrease according to the size of the shared memory
used for the input object and sub-PFPs data, which means
that there might be a tradeoff between them. Accordingly,
here in this article, the maximum space of the shared memory
for storing the input object and sub-PFPs data has been
limited to 12,288 bytes for maintaining the designed 100%
occupancy of the GPU cores.

6 Conclusions

In this article, we have implemented 1-D N-LUT on the GTX
690 GPU board by using three types of memory managing
techniques. Experiments with test 3-D objects show that the
average CGH calculation time for one object point of the
implemented system has been calculated to be 0.046 ms,
which means that it could generate almost 3 frames of
CGHs with 1920 x 1080 pixels per second for the 3-D
object with 8000 object points. Experimental results finally
confirm the feasibility of the proposed system in the practical
applications.

Acknowledgments

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (No. 2013-067321). This work was partly
supported by the IT R&D program of MSIP/MOTIE/KEIT
(10039169, Development of Core Technologies for Digital
Holographic 3-D Display and Printing System). The present
Research has been conducted by the Research Grant of
Kwangwoon University in 2014.

References

1. M. Lucente, “Interactive computation of holograms using a look-up
table,” J. Electron. Imaging 2(1), 28-34 (1993).

2. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of
3-D objects using a novel look-up table method,” Appl. Opt. 47, D55—
D62 (2008).

3. S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of
the novel look-up table with one-dimensional sub-principle fringe
patterns in computer-generated holograms,” Opt. Express 20, 12021—
12034 (2012).

4. S.-C. Kim and E.-S. Kim, “Fast computation of hologram patterns of
a 3-D object using run-length encoding and novel look-up table meth-
ods,” Appl. Opt. 48, 1030-1041 (2009).

5. S.-C. Kim, W.-Y. Choe, and E.-S. Kim, “Accelerated computation of
hologram patterns by use of interline redundancy of 3-D object
images,” Opt. Eng. 50(9), 091305 (2011).

6. S.-C. Kim, K.-D. Na, and E.-S. Kim, “Accelerated computation of
computer-generated holograms of a 3-D object with N X N-point prin-
ciple fringe patterns in the novel look-up table method,” Opt. Laser
Eng. 51, 185-196 (2013).

7. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video
holograms by combined use of data compression and look-up table
techniques,” Appl. Opt. 47, 5986-5995 (2008).

Optical Engineering

035103-11

8. S.-C. Kim et al., “Fast generation of video holograms of three-dimen-
sional moving objects using a motion compensation-based novel
look-up table,” Opt. Express 21, 11568-11584 (2013).

9. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of
N-LUT method using field programmable gate array technology,”
Proc. SPIE 7957, 79571C (2011).

10. Z. Ali et al., “Simplified novel look-up table method using compute
unified device architecture,” 3D Res. 2, 1-5 (2011).

11. X. Xu et al., “Computer-generated holography for dynamic display
of 3D objects with full parallax,” Int. J. Virtual Reality 8, 33-38
(2009).

12. Y. Pan et al., “Fast CGH computation using S-LUT on GPU,” Opt.
Express 17, 18543-18555 (2009).

13. Y. Liu et al., “A fast analytical algorithm for generating CGH of 3D
scene,” Proc. SPIE 7619, 76190N (2010).

14. Y.-Z. Liu et al., “High-speed full analytical holographic computations
for true-life scenes,” Opt. Express 18, 3345-3351 (2010).

15. T. Shimobaba et al., “Rapid calculation algorithm of Fresnel computer-
generated-hologram using look-up table and wavefront-recording
plane methods for three-dimensional display,” Opt. Express 18,
19504-19509 (2010).

16. J. Weng et al., “Generation of real-time large computer generated holo-
gram using wavefront recording method,” Opt. Express 20, 4018-4023
(2012).

17. NVIDIA GeForce series GTX690, GTX580, GTS450, GT 640, http://
www.nvidia.com/object/geforce_family.html.

18. NVIDIA Quadro6000, http://www.nvidia.com/object/quadro.html.

19. NVIDIA Tesla K10, http://www.nvidia.com/object/tesla-supercomputing-
solutions.html.

20. W. Hwu and D. Kirk, “CUDA memories,” Chapter 5 in Programming
Massively Parallel Processors: A Hands-On Approach, pp. 77-93,
Morgan Kaufmann, San Francisco (2010).

21. T. Shimobada et al., “Fast calculation of computer-generated-hologram
on AMD HDS5000 series GPU and OpenCL,” Opt. Express 18, 9955—
9960 (2010).

22. N. Takada et al., “Fast high-resolution computer-generated hologram
computation using multiple graphics processing unit cluster system,”
Appl. Opt. 51, 7303-7307 (2012).

23. NVIDIA CUDA Occupancy Calculator, http://developer.download
.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_
calculator.xls.

24. Private communications with a CUDA specialist (Dr. H.-G. Ryu)
working at NVIDIA, Korea.

Min-Woo Kwon received his BS degree from Kwangwoon University,
Seoul, Republic of Korea, in 2006, and his MS degree from the
Department of Electronics Convergence Engineering of the Graduate
School of Kwangwoon University in 2008. Since 2012, he has been
a PhD of the 3DRC (3D Display Research Center) and HoloDigilog
(Holodigilog Human Media Research Center) of Kwangwoon
University. His research interests include 3D imaging and display,
holography, and optical information processing.

Seung-Cheol Kim received his BS degree from Kwangwoon Univer-
sity, Seoul, Republic of Korea, in 2002, and his MS and PhD degrees
in electronic engineering from the Graduate School of Kwangwoon
University, in 2004 and 2007, respectively. Since 2007, he has
been a research professor of the 3DRC (3D Display Research Center)
and HoloDigilog (Holodigilog Human Media Research Center) of
Kwangwoon University. His research interests include 3D imaging
and display, holography, and optical information processing.

Eun-Soo Kim is a professor in the Department of Electronics
Engineering at Kwangwoon University in Seoul, Republic of Korea,
and the director of the 3D Display Research Center and the director
of the HoloDigilog Human Media Research Center. In 1984, he
received his PhD degree in electronics from Yonsei University, Seoul.
He was a visiting professor at California Institute of Technology from
1987 t01988. His research interests include 3-D imaging and displays,
3-D fusion technologies, and their applications.

March 2014 « Vol. 53(3)

http://dx.doi.org/10.1117/12.133376
http://dx.doi.org/10.1364/AO.47.000D55
http://dx.doi.org/10.1364/OE.20.012021
http://dx.doi.org/10.1364/AO.48.001030
http://dx.doi.org/10.1117/1.3596178
http://dx.doi.org/10.1016/j.optlaseng.2012.10.013
http://dx.doi.org/10.1016/j.optlaseng.2012.10.013
http://dx.doi.org/10.1364/AO.47.005986
http://dx.doi.org/10.1364/OE.21.011568
http://dx.doi.org/10.1117/12.876615
http://dx.doi.org/10.1007/3DRes.03(2011)2
http://dx.doi.org/10.1364/OE.17.018543
http://dx.doi.org/10.1364/OE.17.018543
http://dx.doi.org/10.1117/12.848472
http://dx.doi.org/10.1364/OE.18.003345
http://dx.doi.org/10.1364/OE.18.019504
http://dx.doi.org/10.1364/OE.20.004018
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/geforce_family.html
http://www.nvidia.com/object/quadro.html
http://www.nvidia.com/object/quadro.html
http://www.nvidia.com/object/quadro.html
http://www.nvidia.com/object/quadro.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://dx.doi.org/10.1364/OE.18.009955
http://dx.doi.org/10.1364/AO.51.007303
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_Occupancy_calculator.xls

