We report the terahertz (THz) emission from Bi1-xSbx/Co and Bi2SnTe4/Co bilayers including nanometer-thin ferromagnetic layer as spin-injectors and Bi1-xSbx and Bi2SnTe4 topological insulators (TI) from the Bi family grown by molecular beam epitaxy. Using THz emission spectroscopy, an efficient dynamical spin-to-charge conversion in the sub-picosecond timescale is demonstrated in these heterostructures with an output THz amplitude sizeable compared to reference metallic spintronic THz emitters. We investigate TI thickness dependence and azimuthal crystalline orientation dependence on the THz emission which are both in line with interfacially-mediated interconversion. We show that a strong reminiscent THz signal at the limit of small TI thickness is explained by a spin-charge interconversion occurring at the level of the first planes of their interface in contact with Co. This strongly suggests a spin-charge interconversion via inverse Rashba-Edelstein effect (IREE) onto spin-locked TI’s interface states.
THz emission spectroscopy reveals to be a very powerful experimental method to investigate the properties of Rashba or topological insulator surface states. The THz emission can be also used in heavy metallic or in more general Rashba systems. We prove here the ability of the present method. In 3d/5d transient metal bilayers and beyond heavy metal structures, Rashba states and Topological insulators are expected candidates for spintronic-terahertz domains due to their high spin to charge conversion properties. In this scheme, we are interested in the samples based on 2D electron gas, topological insulators and Heusler alloys with strong spin-orbit coupling.
Strong light-matter coupling in the terahertz (THz) region has strong potential for a new generation of THz devices based on polariton devices. In this work we investigate intersubband polaritons by time domain spectroscopy and characterize the coupled light-matter states at low k-vector for potential THz laser structures. A range of THz devices are studied to control the light-matter interaction and compared with the simulated polariton dispersion. The potential and investigations of THz stimulated emission via optical pumping at the so called “magic angle” for conservation of momentum and energy are presented.
Optically-driven photoconductive switches are one of the predominant sources currently used in terahertz imaging systems. However, owing to their low average powers, only raster-based images can be taken, resulting in slow acquisition times. In this work, we show that placing a photoconductive switch within a cavity, we are able to generate absolute THz powers of 181 µW. The cavity is based on a metal-insulator-metal structure that permits an enhancement of the average power by almost one order of magnitude whilst conserving a broadband response. We demonstrate real-time imaging using this source, with the broadband spectrum permitting to eliminate diffraction artefacts.
Terahertz (THz) emission spectroscopy in spin systems has become a very powerful method to generate THz radiation and to investigate the properties of Rashba or Topological Insulator surface states. The THz emission can be generated in heavy metallic or in more general Rashba systems. In 3d/5d transient metal bilayers THz emission in via the Inverse Spin Hall effect. Beyond heavy metal structures, Rashba states are strong candidates for THz-spintronics owing to their high spin to charge conversion properties. Here we present 2D electron gas with strong Rashba spin-orbit coupling and demonstrate THz emission via the Inverse Edelstein Effect.
Reaching high average powers and room temperature operation for THz sources has become the key challenge for the uptake of THz applications that require real-time imaging. In this work, we show that by placing a photoconductive switch within a quasi-resonant cavity based on a metal-insulator-metal geometry, we are able to generate, at room temperature, average THz powers greater than of 200 µW, with the frequency of the THz emission centred at 1.5THz, specifications ideally adapted to NDT. We demonstrate proof-of-principle real-time THz imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.