
Dr Guyon is currently leading the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) group at the Subaru Telescope to use these new techniques on the Subaru telescope for exoplanet detection and characterization. Dr Guyon also works for the University of Arizona, where he is developing high contrast imaging techniques for current and future ground and space-based telescopes.
Dr Guyon was awarded the 2006 Presidential Early Career Award for Scientists and Engineers (PECASE) by Office of the President of the United States, and the 2012 MacArthur fellowship.
These 3D waveguide tricouplers are fabricated using the femtosecond laser direct-write technique. This process involves a tightly focused laser to modify the refractive index of a boro-aluminosilicate glass sample, creating optical waveguides. We present a rigorous optimisation of the tricouplers which includes a numerical solution to coupled-mode equations to obtain coupling coefficients and propagation constants that are used to optimise the fabrication process for the J (1.1 μm - 1.4 μm) and H (1.5 μm - 1.8 μm) wavelength bands. Furthermore, the polarisation behaviour, the wavelength behaviour and interferometric performance has been investigated to create an accurate transfer matrix of the device.
In previous work, we identified the optimal 5T 3D device, as being single-mode between 550-800 nm and showing good internal transmission in all input channels, above 45% at 635nm. The internal transmission (sum of the output values obtained for the four waveguides of the 1x4 splitter as normalized to the output signal obtained from the straight waveguide used as a reference) was measured. Two inputs achieved 80% transmission. The PIC was installed in the FIRST/SUBARU optical bench simulator at LESIA, to inject light into five inputs simultaneously and scan the fringes using independent MEMS segments, inducing a relative OPD modulation. The results of this study, comparing the signature obtained for a single source (star) as compared to a binary, will be presented in this work. We will show that both polarizations are guided, with no crosstalk, and analyze the interferometric performances as a function of the source type, showing that the binary companion can be detected.
SHARK-NIR is an instrument which provides direct imaging, coronagraphic imaging, dual band imaging and low resolution spectroscopy in Y, J and H bands, taking advantage of the outstanding performance of the Large Binocular Telescope AO systems. Binocular observations will be provided used in combination with SHARK-VIS (operating in V band) and LMIRCam of LBTI (operating from K to M bands), in a way to exploit coronagraphic simultaneous observations in three different wavelengths.
A wide variety of coronagraphic techniques have been implemented in SHARK-NIR, ranging from conventional ones such as the Gaussian Lyot, to others quite robust to misalignments such as the Shaped Pupil, to eventually techniques more demanding in term of stability during the observation, as the Four Quadrant; the latter is giving in theory and simulations outstanding contrast, and it is supported in term of stability by the SHARK-NIR internal fast tip-tilt loop and local NCPA correction, which should ensure the necessary stability allowing this technique to operate at its best.
The main science case is of course exoplanets search and characterization and young stellar systems, jets and disks characterization, although the LBT AO extreme performance, allowing to reach excellent correction even at very faint magnitudes, may open to science previously difficult to be achieved, as for example AGN and QSO morphological studies.
The institutes participating to the SHARK-NIR consortium which designed and built the instrument are Istituto Nazionale di Astro Fisica (INAF, Italy), the Max Planck Institute for Astronomy (MPIA, Heidelberg, Germany) and University of Arizona/Steward Observatory (UoA/SO, Tucson, Az, USA). We report here about the SHARK-NIR status, that should achieve first light at LBT before the end of 2022.RISTRETTO is the evolution of the original idea of coupling the VLT instruments SPHERE and ESPRESSO,1 aiming at High Dispersion Coronagraphy. RISTRETTO is a visitor instrument that should enable the characterization of the atmospheres of nearby exoplanets in reflected light, by using the technique of high-contrast, high-resolution spectroscopy. Its goal is to observe Prox Cen b and other planets placed at about 35mas from their star, i.e. 2λ/D at λ=750nm. The instrument is composed of an extreme adaptive optics, a coronagraphic Integral Field Unit, and a diffraction-limited spectrograph (R=140.000, λ =620-840 nm).
We present the status of our studies regarding the coronagraphic IFU and the XAO system. The first in particular is based on a modified version of the PIAA apodizer, allowing nulling on the first diffraction ring. Our proposed design has the potential to reach ≥ 50% coupling and ≤ 10−4 contrast at 2λ/D in median seeing conditions.To directly image and characterize exoplanets, many developments of high-contrast imaging (HCI) systems are ongoing for current ground-based telescopes as well as future extremely large telescopes and space-based telescopes. Despite recent developments in HCI, the contrast of the HCI systems is limited by non-common path aberrations (NCPAs) and residual errors of the adaptive optics (AO) system. In order to overcome these limitations, HCI systems need focal plane wavefront sensing and control (FPWFS&C) techniques.
We present the implementation of two FPWFS&C techniques, electric field conjugation (EFC) and spatial linear dark field control (LDFC), on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. First, we generate a half-dark hole in the focal plane image using EFC. Once the bright field and dark field (dark hole) have been established by EFC, as a second step, we deploy spatial LDFC to maintain the contrast of the half-dark hole generated by EFC. We could also use EFC to preserve the contrast of the dark hole, but it requires field modulation, which interferes with the science image acquisition. Because of this reason, we use spatial LDFC as an alternative way to maintain the contrast without modulation.
In actual demonstrations, we obtained a dark hole contrast of ∼2×10−7 with a classical Lyot coronagraph of 114 mas diameter, at a 1550 nm wavelength using EFC. This result is the first EFC implementation and the deepest contrast obtained on the SCExAO testbed. Using spatial LDFC, we also ideally removed focal plane speckles generated by static phase error and restored the initial contrast. Our results provide a promising path forward to generating the high-contrast dark hole using EFC and stabilizing the contrast of the dark hole without interrupting the science acquisition using spatial LDFC.