Hyperspectral imaging is particularly useful for per-pixel thematic classification by unique spectral signatures of landscape materials. Deep learning techniques such as convolutional neural networks have boosted the performance of image classification. Recently, several composite learning-based convolutional networks, i.e., deep residual networks (ResNets) and dense convolutional networks (DenseNets), have been presented to learn deep feature representation for image classification, and achieve high classification accuracies. In this paper, we present a fairly comparable architecture, including two kinds of modified residual learning networks with a shallow depth using small training data. First, we perform the extraction of key components from deep residual networks and dense convolutional networks, which is a set of composite learning structures with skip connections. Second, the plain convolutional neural networks (PNets) have been constituted by a stack of plain blocks that also have been placed in the presented network architecture as the baseline networks. Third, we make them as comparable as possible with the plain convolutional network structures, so that the more profound exploration and improvement could be further done. Finally, we wrap them together and design a comparable architecture. Experiments demonstrate that the presented residual learning networks show special characteristics for hyperspectral image classification, which have not been revealed before.
Course Instructor
NON-SPIE: Cartography
Cartography is the creation and the study of maps and charts.
Hyperspectral imaging (HSI) is a spectral imaging acquisition where each pixel of the image was employed to acquire a set of images within certain spectral bands.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.