As the digital projector develops, fringe projection profilometry has been widely used in the fast 3D measurement. However, the field of view of traditional 3D measurement systems is commonly in decimeters, which limits the 3D reconstruction accuracy to tens of microns. If we want to improve the accuracy further, we have to minimize the field of view and meanwhile increase the fringe density in space. For this purpose, we developed two kinds of systems based on a stereo-microscope and telecentric lenses, respectively. We also studied the corresponding calibration frameworks and developed fast 3D measurement methods with both Fourier transform and phase- shifting algorithms for real-time 3D reconstruction of micro-scale objects.
In fringe projection profilometry, using denser fringes can improve the measurement accuracy. In real-time measurement situations, the number of the fringe pattern is limited to reduce motion-induced errors, which, however, poses more difficulties for the absolute phase recovery from dense fringes. In this paper, we propose a stereo phase matching method that takes advantage of the high-accuracy of denser fringes and the high-efficiency of using only two different frequencies of fringes. The phase map is divided into several sub-areas and in each sub-area, the phase is unwrapped independently. The correct matched pixel is easily selected from the distributed candidates in different sub-area with the help of geometry constraints.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.