A novel curved compound eye imaging system is put forward in this paper. Non-uniform hexagonal lens array is
arranged on the inner surface of a plano-concave substrate. Based on the geometrical optics, the parameters of each
microlens are set according to the position of the lens, and even orders of aspheric lens are used to correct some primary aberrations. Optical parameters of this configuration are entered into numerical ray-tracing simulations (ZEMAX). The result shows that the new curved compound eye can enlarge the field of view (FOV) approximately 50% compared to the lateral compound eye, and the FOV can be up to 150°. The principles and functions of all parts of system are described in detail. At last, the feasibility of ultra-precision machining is studied in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.