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1.1.2 Thermal blooming of high-power laser beams 
 
The longitudinal scale of variability for thermal inhomogeneities induced in the 
propagation channel of a high-power laser beam is comparable to the diffraction 
length of the beam. In the interval z, the equation for the phase screen can be 
approximated by the product of a step length z and the refractive index 
distribution at the center of the interval [zl; zl+z]: 
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It follows from the above that we have only to determine perturbations of the 
refractive index in some planes, the positions of which are determined by the 
scheme of the splitting algorithm. 

Heating of the medium that is caused by absorption of radiation energy 
induces variation of its density, which leads to a decrease in the refractive index 
related to the density  by the following law [26]: 

 
n K   ,                                       (1.1.14) 

 
where K is a constant equal to two-thirds of the polarization factor of a molecule 
or gas atom. 

In the isobaric approximation, the density of the medium is explicitly related 
to temperature by the ideal gas law, so variations of the refractive index can be 
expressed through temperature variations: 
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The isobaric approximation is valid for the normal atmospheric conditions. 
Exceptions are fast scanning of a continuous-wave (cw) high-power beam when 
the beam speed with respect to the medium is greater than the sonic speed, and 
when the pulse duration p is comparable with the acoustic time s: 
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where a is the beam size and cs is the sonic speed. 

When the isobaric approximation is valid, the distribution of the refractive 
index in the beam cross section is determined by the heat balance, which is 
described by the heat transfer equation for the temperature field T(x, y, z): 
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where ( , )x yV V V 


 is the transverse component of the beam velocity relative to 

the medium,  is heat conductivity, 0 is the specific density of the medium,  is 
the absorption coefficient, and Cp is the specific heat at constant.  

When the isobaric approximation becomes invalid, variations in the density 
of the medium are described by the linearized equations of hydrodynamics, 
which follow from the law of continuity and the laws of impetus and energy 
conservation [21, 26]: 
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These equations are valid for small perturbations of density 1, pressure p1, and 
local speed of the medium flow v1 with respect to the unperturbed values of 
density 0, pressure p0, and local speed of medium flow v0 along the x-axis. By 
eliminating the variables describing perturbation of speed and pressure, Eqs. 
(1.1.18)–(1.1.20) can be transformed into the following equation, which 
describes perturbations of the density: 
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For a steady-state condition, this equation takes the form 
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where / SM c   is Mach’s number and  = Cp/Cv is the specific heat ratio at a 
constant volume. 

When the flow rate of the medium is low ( / SM c  <<1), Eq. (1.1.22) 
transforms into the equation written in the isobaric approximation: 
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Solution of this equation yields a result equivalent to that of Eq. (1.1.17), with 
vy = 0 and 0  . 

With no wind, under conditions of gravitational convection, the heat balance 
equation should be solved by a set of equations for incompressible liquid 
hydrodynamics. The plane (2D) flow of this liquid in the Boussinesq–Oberbeck 
approximation is described by the vortex (vorticity) function  and the stream 
function  [27] equations: 
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    ,    (1.1.25) 
 
where  is the volume expansion coefficient,  is the kinematic viscosity 
coefficient, and g is the absolute value of the acceleration of gravity directed 
along the 0y axis. 

The local speed of the flow in the equations for temperature and vorticity is 
now a function of transverse coordinates. Its components are related to the partial 
derivatives of the stream function as follows: 
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When describing thermal blooming under conditions of free convection, 

Eqs. (1.1.17), (1.1.24), and (1.1.25) are complemented by the corresponding 
initial and boundary conditions. In the case of propagation in a closed space, they 
are the conditions of adhesion and zero flow speed at the boundary  for the 
normal and tangential components of the flow velocity: 
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These conditions in turn determine the boundary conditions for the stream 

function and its derivative with respect to the normal to the boundary surface: 
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The boundary and initial conditions for the temperature field are usually set to be 
zero. 

So the mathematical model of thermal blooming of high-power coherent 
laser beams in a low-absorbing medium includes the parabolic wave equation for 
the scalar complex amplitude [Eq. (1.1.4)] and the corresponding material 
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equation (or set of equations) describing density and temperature variations and 
determining the distribution of the refractive index in the beam channel: 
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where the operator M̂  describes the relation between the induced optical 
inhomogeneities and the absorbed energy I. 

Below we present the results of applying our numerical technique for 
estimating the thermal blooming distortions of coherent beams propagating along 
atmospheric paths that were developed in Refs. [4], [16-18], [24], [30], and [49]. 
To allow for the regular altitudinal variation of thermodynamic parameters, we 
have used statistical seasonal atmospheric models, built from refined data 
obtained by the Institute of Atmospheric Optics in Tomsk [56-58]. The altitude 
profile of the molecular absorption coefficient for summer and winter mean-
latitude models was obtained by means of a software program that calculates 
molecular absorption line by line [59].  

As an example of implementation of the mathematical model, let us consider 
the results computed for thermal blooming of a focused Gaussian beam crossing 
a thin layer L of a nonlinear medium (nonlinear phase screen). In this example, 
the approximation of a nonlinear phase screen indicates that the thickness L of 
the layer is much shorter than the beam focal length and the diffraction length 

2
0dL ka  of the beam and that the Bouguer extinction is low ( L <<1). 

In Fig. 1.1.1, the dynamics of thermal blooming under conditions of forced 
convection are illustrated for a convective flow speed that is much lower than the 
sonic speed [isobaric approximation, Eq. (1.1.17)] and for the heat conductivity 

0  . In this case, the sole parameter of the problem [56-59] is the integral 
nonlinearity of the medium layer: 
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where I0 is the initial intensity of the beam, 0a  is the initial size of the Gaussian 

beam, and   is the Bouguer extinction of media. When transient processes end, 
the phase screen can be described as an integral of the normalized beam 
intensity: 
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At a large distance x, the value of phase  at the 0z axis (y = 0) tends toward 

1.77N NP P  . In calculations, the value of PN was assumed to be equal to 10; 

this value corresponds to the maximal phase difference of 17.7 rad or 2.8. For 
such nonlinear distortions, the steady-state maximal value of the focus intensity 
decreases more than 10 times. Figure 1.1.1 shows two examples of calculations 
for different directions of the wind vector. For every instant of time t (here, time t 

is normalized at a value of 0 ,a V  where V  is wind velocity) the 2D 
distributions of phase distortions in the plane of the emitting aperture are shown, 
along with the intensity distribution in the focal plane for the Gaussian beam. In 
the first case the wind was directed along the ordinate; and in the second case, the 
angle between the wind and the ordinate was 45 deg. 

Figure 1.1.2 shows typical images of thermal blooming of laser radiation 
under different stream velocities. The numbers in each image box of Figs. 1.1.1 
and 1.1.2 show the maximum and minimum values of the functions  I


  and 

  


. It can be seen that the estimate of phase distortions in the steady state 

(17.7 rad) is in good agreement with the results obtained in the numerical 
experiment (16.9 and 16 rad). The difference of 5–10% can be attributed to the 
error of the numerical model and the fact that the transient processes did not end 
completely. 

The calculations have been performed by the monotonic conservative 
procedure with the second-order approximation, differences were taken with 
respect to the stream [27], and the model viscosity (heat conductivity) was 
compensated for according to Samarskii’s algorithm [28]. The advantage of this 
method is that it makes it possible to solve the dynamic problem of heat transfer 
at an arbitrary orientation of the wind vector. The method is stable for both small 
and large intervals of time discretization and it allows the solution of the heat 
transfer problem when wind velocity depends on the transverse coordinates       
(x,y). Thus, the calculations can be performed for the problem of thermal 
blooming under free (gravitational) convection conditions [Eq. (1.1.17) together 
with Eqs. (1.1.24) and (1.1.25)], as well as the boundary conditions of adhesion 
and zero speed. Some sample calculations are given in Ref. [29]. In this text we 
do not consider these convection conditions in greater detail because 
gravitational convection is atypical for open atmospheric paths. 

Next we consider the situation of a high-power beam with scanning. In this 
case, the speed of beam transition with respect to the medium at some distance 
from the source can be close to or even higher than sonic speed. In Fig. 1.1.2, 
density perturbations are shown for forced convection conditions with the speed 
of the flow close to sonic speed [Eq. (1.1.22)]. The value of the parameter PN was 
assumed to be two times smaller than in the previous example. In the isobaric 
approximation, this corresponds to the maximal phase change on the path (8.8 
rad). It is seen that for a Mach number range of M = 0.5–0.7 the results do not 
differ widely. With a further increase in M (i.e., M approaches unity), phase 
distortions increase sharply. For an M greater than unity, we obtain a solution 
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approximately equal to the results of the isobaric approximation, but two times 
greater. It can be shown analytically that for M approaching infinity this 
conclusion is correct. 
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Figure 1.1.1. Dynamics of thermal blooming under conditions of forced 
convection (isobaric approximation): (a) wind is directed along the 0x-axis and (b) 

at an angle of 45 deg to the 0x-axis;  I 


 is the intensity distribution in the far 
zone;   


 is the phase screen. 
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Figure 1.1.2. Thermal blooming behind the phase screen under conditions of 
forced convection (stationary solution of the linearized equations of 

hydrodynamics);  I

  is the intensity distribution in the far zone,   


 is the 

phase screen. 
 
1.1.3 Turbulent distortions of a wavefront 
 
Under conditions of turbulent fluctuation, the longitudinal scale of variability of 
the refractive index is on the same order as the inner scale of turbulence l0, which 
is usually much less than the discretization step z for a reasonable (in terms of 
computational expense) number of integration steps for the wave equation. In this 
case, integration of refractive index inhomogeneities along the z coordinate 
should be performed analytically. And, because a statistical method is used to 
describe turbulent fluctuations ( , )n z 


, the integration yields the equation for 

statistical characteristics, for example, the correlation function of phase 
fluctuations: 
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