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of this dimensionality problem, regularization techniques such as SVD are
almost always needed to perform the covariance matrix inversion. Because
it appears to be a fundamental property of hyperspectral data, however, this
dimensionality issue warrants further investigation, as it seems to indicate
that data representation is highly inefficient and overly sensitive to noise.

12.2 Dimensionality Reduction

From the geometric representation in Fig. 12.2, it is apparent from the
linear spectral mixing concept that signal content within hyperspectral
data is likely restricted to reside within a lower-dimensional subspace of
the K-dimensional data space, where subspace dimensionality is dictated
by the number of spectrally distinct materials in the scene. Depending on
scene complexity, this dimensionality could be small or quite large. In real
sensor data, however, spectral measurements are corrupted by noise, which
is completely random and not restricted in the same manner. The reduced
dimensionality of the information content within hyperspectral imagery
can be recognized by the high degree of correlation that typically exists
between spectral bands.

For example, Fig. 12.4 illustrates three bands across the full spectral
range of a Hyperion satellite image over the intersection of two major
highways in Beavercreek, Ohio. These bands capture some of the
same spatial features of the scene but also indicate significant spectral
differences. The band-to-band correlation is modest, and each band
carries a substantial amount of new information not contained within
the others. On the other hand, there are other band combinations, such
as those depicted in Fig. 12.5, for which correlation is very high and
each band carries little additional information relative to the others. To
a large degree, the band combinations are redundant. This high degree
of correlation, or reduced inherent dimensionality, implies that the data
can be represented in a more compact manner. Transforming the data
into a reduced-dimensionality representation has multiple benefits. First,
it limits the amount of data needed for processing and analysis, an
obvious advantage where computer memory, network bandwidth, and
computational resources are concerned. Additionally, representing the
data according to the primary signal components as opposed to the
sensor spectral bands accentuates underlying material content, aiding
visualization and analysis. Finally, transforming to a lower-dimensional
subspace should provide noise reduction, as this this process filters out the
noise power in the subspace that is removed.

12.2.1 Principal-component analysis

The principal-component transformation, commonly known as ei-
ther principal-component analysis (PCA) (Schowengerdt, 1997) or the
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Figure 12.4 Three example bands from a Hyperion VNIR/SWIR hyperspectral
image over Beavercreek, Ohio, exhibiting modest spectral correlation: (a) 610 nm,
(b) 1040 nm, and (c) 1660 nm.

(a) (b) (c)

Figure 12.5 Three example bands from a Hyperion VNIR/SWIR hyperspectral
image over Beavercreek, Ohio, exhibiting high spectral correlation: (a) 509 nm,
(b) 610 nm, and (c) 2184 nm.

Karhunen–Loeve transformation (Karhunen, 1947; Loeve, 1963), ad-
dresses the issue of spectral correlation and provides one basis for dealing
with data dimensionality. Assume for the moment that the inherent data
dimensionality is actually K, such that the covariance matrix is full rank
and therefore invertible. Spectral correlation manifests by nonzero, off-
diagonal elements of the covariance matrix. Suppose that there was another
set of orthogonal coordinate axes in the multidimensional space for which
the covariance matrix was actually diagonal. If the data were transformed
into this new coordinate system, the spectral correlation between bands
would be removed. This is what the PCA transform attempts to perform;
it is shown graphically for a simple 2D case in Fig. 12.6, where normally
distributed data are presented in the form of a scatter plot. Relative to the
sensor spectral bands, the data exhibit a high degree of spectral correlation.
However, correlation would be removed in this case if the bands were re-
defined to correspond to the principal axes of the elliptically shaped scatter
distribution, denoted as v1 and v2 using dotted vectors.
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Figure 12.6 2D scatter plot of normally distributed data, illustrating the concept of
redefining the bands to correspond to the principal axes in order to remove spectral
correlation.

Principal-component transformation is a matter of diagonalizing a
sample covariance matrix, a technique that is mathematically performed by
determining its eigenvalues and eigenvectors (Strang, 1980). This begins
by solving the characteristic equation

det(C − σ2I) = 0 (12.16)

for a set of solutions {σ2
j , j = 1, 2, . . . ,K}, where det(A) represents the

determinant of matrix A, and I is the K × K identity matrix. Under the
full-rank assumption, K nonzero solutions exist, where each eigenvalue
σ2

j represents the variance of data for a particular eigenvector direction.
Eigenvectors v j correspond to the principal directions for which the
spectral correlation is removed and are computed by solving the linear
system of equations

Cv j = σ2
jv j (12.17)

for their corresponding eigenvalues. Since eigenvectors can be arbitrarily
scaled and still satisfy Eq. (12.17), a unitary basis is chosen, such that

vT
j v j = 1 (12.18)

for all j.
Suppose that diagonal matrix D is formed by placing the eigenvalues

along the diagonal in decreasing order, that is, from highest to lowest
variance. The eigenvectors are placed in corresponding order as columns
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of unitary eigenvector matrix V. It then follows from Eq. (12.17) that

CV = V D. (12.19)

Since the inverse of a unitary matrix is its transpose, it follows that

C = V DVT , (12.20)

which indicates that the linear transformation represented by eigenvector
matrix V diagonalizes the covariance matrix. Therefore, the principal-
component transformation,

Z = VT X, (12.21)

represents a coordinate rotation to principal-component data matrix Z into
an orthogonal basis, such that the new principal-component bands are both
uncorrelated and ordered in terms of decreasing variance.

As an example of PCA, consider again the Hyperion Beavercreek
image shown in Figs. 12.4 and 12.5. Ranked eigenvalues of the sample
covariance matrix are displayed on a logarithmic scale in Fig. 12.7,
where it is apparent that variance in the data is predominately captured
by a small set of leading principal-component directions. Figure 12.8
provides the first three eigenvectors, while the principal-component band
images, corresponding to the Hyperion data, are illustrated in Fig. 12.9.
These images capture primary features of the original hyperspectral image
with no spectral correlation. Generally, the first principal component
corresponds to the broadband intensity variation, while the next few
capture the primary global spectral differences across the image. By
comparing a three-band false-color composite from these three principal
components with an RGB composite from the original 450-, 550-, and 650-
nm bands (as illustrated in Fig. 12.10), the ability of the PCA to accentuate
scene spectral differences is apparent. Statistically rare spectral features
along with sensor noise dominate the low-variance, trailing principal
components, three of which are illustrated in Fig. 12.11.

12.2.2 Centering and whitening

Several variations of PCA can be found in the literature and therefore
warrant some discussion. The first concerns removal of the sample mean
vector m and scaling of the diagonalized covariance matrix D. Especially
when dealing with various target detection algorithms (described in
the next chapter), it is sometimes desirable to transform data into an
orthogonal coordinate system centered within the data scatter as opposed



514 Chapter 12

Figure 12.7 Magnitude of the ranked eigenvalues of the Hyperion Beavercreek
image.

to the origin defined by the sensor data. This can be performed using the
affine transformation,

Z = VT (X −muT ) (12.22)

in place of the standard principal-component transformation given in
Eq. (12.21), or equivalently, by removing the sample mean vector m
from all original spectral vectors prior to computing and performing the
principal-component transformation. This is called centering, demeaning,
or mean removal. Another variation is to use the modified transformation
to scale the principal-component images such that they all exhibit unit
variance:

Z = D−1/2VT (X −muT ). (12.23)

This is referred to as whitening the data, and D−1/2 simply refers to a
diagonal matrix for which the diagonal elements are all the inverse square
root of the corresponding eigenvalues in D. To illustrate the difference
between these variants of the principal-component transformation,
Fig. 12.12 compares the transformed scatter plot from Fig. 12.6 in the
principal component and whitened coordinate system. Data centering is
performed in each case.




