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11.1 Optimization Approaches 
There are four techniques to employ optimization of optical structures with 
optical performance constraints: 
 
 Level 1 is characterized by manual iteration to improve the predicted 

performance of a design. In this approach, a finite element analysis is 
performed to find the structural deflections. The FE results are processed 
in a postprocessor to write surface deformations in a format readable by 
optical analysis software, as described earlier in this text. The optical 
analysis software is then used to compute optical performance. Intuition 
and experience are important in this process to recognize how the design 
should be modified to improve performance. 

 Level 2 is characterized by the use of equations of optical performance 
within the FE model. These equations can be written for optical 
performance quantities at the single-surface level, such as surface RMS 
error after bias, tilt, and power have been removed, or at the system 
level, such as RMS wavefront error or line-of-sight jitter. The internal 
optimizer in FE software can then optimize the optical design directly 
without the need for manual iterations. 

 Level 3 is characterized by calculation of optical performance through an 
external subroutine linked to the FE software for use by the FE 
program’s optimizer. This approach may be used to perform optimization 
using design performance metrics that cannot be computed by the 
equations used in Level 2. One such example is the design optimization 
of an adaptively controlled mirror in order to minimize the corrected 
surface figure. 

 Level 4 is characterized by combining the capabilities of CAD, FE, and 
optical analysis within a single optimization program. This level of 
implementation allows coupled design variation of the optical 
prescription and the mechanical design. There has been some notable 
progress in this approach, but it is not yet commonplace. 

 
This chapter includes a brief overview of optimization theory and its 

terminology. However, the main emphasis is on the application of optimization 
tools to optomechanical systems. In the design optimization of a typical optical 
structure the predicted quantities relating to performance of the system are 
referred to as design responses. Example design response types are shown in 
Table 11.2. Generally, only one of these design responses may be specified to be 
minimized or maximized by the optimizer and is referred to as the objective. All 
other design responses may have performance limits applied to them consistent 
with the requirements of the design. The applications of such limits in the 
optimizer are referred to as design constraints. In order to define how the 
optimizer is allowed to modify the design, several types of parameters and the 
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Table 11.2 Typical design response quantities used in the optomechanical design 
optimization. 

 
 

Table 11.3 Typical design-optimization problem statement. 

 
 
manner with which they relate to the structural design may be specified. These 
parameters are referred to as design variables. The design variables often have 
specific allowable limits and are referred to as side constraints. Side constraints 
differ from design constraints in that side constraints are applied to design 
variables, whereas design constraints are applied to design responses. Table 11.3 
further illustrates the definitions of a design optimization problem and shows a 
complete design-optimization problem statement.  

Current technology allows for structural optimization using optical 
performance constraints (Section 11.3) or multidisciplinary thermal-structural-
optical optimization (Section 11.4). This chapter does not address some other 
problems that could broadly fall under optomechanical design, such as optical 
beam path length optimization1 in which optimization is used to solve a difficult 
geometry problem. 
 
11.2 Optimization Theory 
In this text, optimum design refers to the application of nonlinear programming 
techniques to find the best solution of the mathematical statement of the design 
problem. 

DEFINITIONS: 
X = vector of design variables, such as sizing, shape, material 
R = vector of design responses, typically nonlinear functions of X 
F = objective = a design response to minimize or maximize 
g = design constraint on a response as either an upper or lower bound 

       )= ( / 0  U UR g R R RUR        (11.1) 

MATHEMATICAL DESIGN PROBLEM STATEMENT: 
Minimize  F(X)    
subject to  g < 0   behavior constraints 
and   XL < X < XU  side constraints        (11.2) 

TYPICAL DESIGN RESPONSE QUANTITIES: 
1 Structural: System weight, center-of-gravity, 

mass-moment-of-inertia 
2 Structural: Stress, buckling, natural 

frequency, dynamic response 
3 Optical: Image motion, jitter, MTF 
4 Optical: Surface RMS error  
5 Optical: System wavefront error 
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Figure 11.1 Three-bar truss with truss member of areas A1, A2, and A3 as labeled. 
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Figure 11.2 Two-variable design space. 
 
If the design goal is to maximize the objective F, the problem can be stated 

in standard form by minimizing −F. If a response is limited by an equality 
constraint, it may be treated as two inequality constraints: 

 
 0 0 and 0.h h h        (11.3) 

 
Fig. 11.1 shows a simple three-bar truss to be optimized with cross-sectional 

area sizing variables A1, A2, and A3, and shape variables S and H. The objective is 
to minimize the weight of the structure while satisfying performance constraints 
on displacement and stress, and obeying side constraints on size and shape. 

The design space is an N-dimensional space with an axis for each of the N 
design variables, which is impossible to visualize if N > 3. A two-variable design 
space is depicted in Fig. 11.2. In most problems, the constraints are generally 
nonlinear functions of X and are often found numerically, which makes them 
expensive and difficult to plot, even in a 2D space. In the five-variable truss 
example, the stress and displacement are found via FEA, and all responses are 
nonlinear in S and H. 
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There is a variety of NLP techniques available2 that move through the design 
space in a sequential manner. The most efficient techniques are gradient-based, 
requiring first derivatives (sensitivities) of the response quantities with respect to 
the design variables (dR/dX). 

A common approach is to use finite differences to calculate sensitivities. Let 
X0 represent a starting design point: 
 

 0 1= ( ,... ,... ),j nX A A A         (11.4) 

 
which is evaluated via FEA: 
 

 0 0 0 0.K U P U           (11.5) 
 
The derivative of displacement with respect to design variable Aj is found by 
perturbing the design: 
 

 1( ,... ,... ).j j j nX A A A A       (11.6) 

 
Then, re-evaluating with FEA, 
 

j j j jK U P U  ,         (11.7) 

 
and computing a finite difference derivative: 
 

   0/ ( ) / .j j j jU dU dX U U A             (11.8) 

 
This is a very general technique, but quite expensive computationally. 

A more efficient technique uses implicit derivatives of the initial equation 
[Eq. (11.5)]: 

 
   0 0 .K U K U P             (11.9) 

 
The derivative U   can be solved from 
 

  
*

0 0 ,K U P K U P                         (11.10) 
 
which is the equivalent computational cost of an additional load case P* in the 
original solution. Note that K′ and P′ are relatively computationally inexpensive 
to calculate in most cases. For the example truss problem, 
 

 / / / .k AE L k dk dA E L               (11.11) 
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For external forces, P′ is 0. For a gravity body force, 
 

 / 2 / / 2.P AL g P dP dA L g                 (11.12) 
 
Most other design responses can then be found from U′ by the chain rule. For 
example, the stress sensitivity in the truss is found from 
 

 / ( / ) / / .d dX d dU U d dU E L         (11.13) 
 

Typical design optimizations require more than 100 design cycles to 
optimize. For large models, the computational time for 100 analyses is 
prohibitive. A significant efficiency can be gained by using the design 
sensitivities and approximation theory2 to create a design response surface. The 
steps in this approach are 

 
1 give a design Xq at design cycle q, 
2 run a full FE analysis along with design sensitivity,  
3 create approximate problem (response surface) via Taylor 

series:  
 

 * ( ) ( ) /( ),q q qg g X g X X X          (11.14) 

 
4 optimize the approximate problem very quickly to get Xq+1, 
5 check convergence before looping back to Step 1. 
 

In this approach (shown in Fig. 11.3), Step 4 requires hundreds of 
computationally inexpensive optimizations, while the computationally expensive 
FEA in Step 2 is typically 10–20 analyses. 
 

 
Figure 11.3 Optimization flow using approximation theory.  


