Chapter 1
Finite Difference
Approximations

Let us begin by explaining the “finite difference” (FD) of the finite difference
time domain (FDTD) methodology. We review the basic concepts and
mathematical properties of different FD expressions, and introduce the basic
concepts and the notation to be used throughout this book.

Topics:
» Elementary finite difference expressions
» Nonstandard finite difference expressions
» Computational molecules

1.1 Basic Finite Difference Expressions
There are three elementary FD expressions for the first derivative:

1. The forward FD (FFD) approximation,

Sx+h) —[f(x)

O e
L dif(x)
o h (1.1)
where
dof(x) = f(x +h) = f(x). (1.2)

Expanding f(x + /) in a Taylor series, we find the error of the FFD
approximation to be
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f
E€Fp = %(x) —f'(x)

:%hf”(x) +éh2f///(x)_ (13)

2. The backward FD (BFD) approximation,

- —h
PR ICR L)
L B (x)
== (1.4)
where
d3f (x) =f(x) = f(x = h). (1.5)
Expanding fix + &), we find that the error of the BFD approximation is
d4b
€BD = X]];(x) = f'(x)
1 " 1 n e
= =S hf"(x) + () (1.6)

The forward- and backward-FD approximations are said to be
first-order accurate or simply “first-order” because the error is
proportional to the first power of /.

3. The central FD (CFD) approximation,
J(x+1/2) —f(x—1/2)

1

J'(x)

h
LA (x)
& b (1.7)
where
dSf(x) =f(x+h/2) = f(x —h/2). (1.8)

Expanding fix + h/2) — fix — h/2), we find the error of the CFD
approximation to be

&cp = dij;l(x) —f'(x)

1 "
:ﬁhzf (xX)+-; (1.9)

thus, the CFD approximation to f” is second-order accurate.
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Comparing Eq. (1.3) with Eq. (1.9), one might suppose that ecp < egp,
but this is true only if A2 f"(x)/24+--- < hf"(x)/2+---. For example,
taking f(x) = ¢** with @ > h, the error of the FFD approximation is actually
smaller than that of the CFD approximation.

Accuracy is not the only criterion for the choice of an FD expression in
constructing an algorithm. It is essential that the algorithm be numerically
stable as well as accurate. (See Section 2.4 for an example of how highly
accurate FD algorithms can display perverse behavior.)

For future reference we derive the CFD approximation for f”(x):

ds [dS
10 =5 (G0

(d5)?
Jx+h) +f(x—h)—2(x)

- = : (1.10)

where (d$)? = dS dC. 1t is straightforward to show that
(d92f(x) = f(x +h) +f(x = h) = 2f (x). (1.11)
Expanding Eq. (1.10) in a Taylor series about x, we find that

(d5)
h2

SO =11 + 15RO 4 (1.12)

thus, the CFD approximation of /" is second-order accurate.
We shall henceforth refer to the above FD expressions as standard finite
difference (S-FD) expressions for reasons that will soon be apparent.

1.1.1 Higher-order finite difference approximations

Retaining only the first two terms of expansion of Eq. (Al.1.12) in
Appendix 1, we obtain

[

S| = | =
—

ouf (02 a5~ 32 @5 |0

DL G hf2) = £~ h2)]

—%[f(x+3h/2) —flx—- 3h/2)}}, (1.13)

o

where we have used Eq. (A1.2.25b) to expand (d$)*f(x). Expanding the right
side in a Taylor series, we find that
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|5 33 |00 =) = W (11

Thus, Eq. (1.14) is a fourth-order FD approximation to f”.

Similarly, the fourth-order approximation for the second derivative is
found by retaining the first two terms of expansion Eq. (Al.13) and using
Eq. (A1.2.25¢) to expand (dS)*f(x) to obtain

A1) 2 (@7 - @9
=1 {‘3‘ e h) £ Cx— )]
—%[f(erzh) +f(x—2h)]—§f(x)}. (1.15)

Expanding the right side of Eq. (1.15) in a Taylor series, we find that

1 1 h*
@92 = f5 @0 =10 - GO+ e

hence, Eq. (1.16) is a fourth-order FD approximation to f”.

1.1.2 Computational molecules

The graphical representation of the difference operators yields useful insights.
For example, the central difference operator for the first derivative,
dSf(x)=f(x+h/2)—f(x—h/2) in Eq. (1.8), can be represented by the
graph in Fig. 1.1. The node position corresponds to the local function value,
and its weight in the finite difference expression is indicated. Usually the
function value is omitted.

The central difference operator for the second derivative,
(d$)?f(x) = f(x+h) =2f(x)+ f(x—h) in Eq. (1.11), can be represented
as shown in Fig. 1.2.

-1 1 -1 1
) - Ol
S(x=%%) Sx+2%%)

Figure 1.1 Computational molecule for d.

1 -2 1
@ @ J

Figure 1.2 Computational molecule for (d$)?.
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1.2 Nonstandard Finite Difference Expressions

Besides the forward-, backward-, and central-FD approximations, there is
another more general class known as nonstandard finite difference (NS-FD)
approximations, which were introduced by Mickens.! Using NS-FD
expressions, it is sometimes possible to greatly reduce the error of an FD
approximation and even to eliminate it.

The most general NS-FD approximation is given by

il S ) = alhf ()
S0y = T (1.17)

where « and s are functions. The central FD approximation is a special case of
Eq. (1.17) withy = x + h/2,a = 1, and s(h) = h. For a NS-FD expression to
be a valid approximation of the derivative, it must converge to f/(x) in the
limit 2 — 0:

St h) = alhyf () w1s)

This constrains the forms of @ and s. Nonstandard FD approximations can be
used to improve the accuracy of FD algorithms, as we shall soon see.

A special case of the general NS-FD approximation that is used
throughout much of this book is the central NS-FD approximation, given as

1y o BT (X)
f (X) = S(h)

_S(x+h/2) —f(x—h/2)
= 0 . (1.19)

1.2.1 Exact nonstandard finite difference expressions

With respect to certain sets of functions, it is possible to define exact
NS-FD expressions for the derivative. For example, let f(x) = ¢** in
Eq. (1.19). We find that dSe’* = 2isin(kh/2); thus, an exact central
NS-FD expression for f” is

/W)

S(x) ) (1.20)
where
s(h) = % (1.21)

and k is any complex number. Equation (1.20) together with Eq. (1.21) is an
exact FD expression even when / is not infinitesimal. As 4 — 0, s(h) — h;
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hence, Eq. (1.20) together with Eq. (1.21) constitutes a permissible FD
expression for the derivative with respect to exponential functions.

Any differential equation with solutions of the form (x) = a,.e* +a ¢ ™~
can be exactly modeled with central NS-FD expressions (and hence solved
exactly with an FD algorithm).

Notice that in Eq. (1.21) s is independent of x. A NS-FD expression in
which s depends on x is useless in a practical algorithm. For example, if
fix) = x" = TN 2 0 and x > 0, an exact central NS-FD expression is

/)

S'(x) Soh) (1.22)
where
s(eh) = 2 Sinh}g”hllrzg) "2 (1.23)

Although Eq. (1.23) does converge to f/(x) in the limit 2 — 0, the dependence
of s on x and the restriction x > 0 render this NS-FD expression useless to
model differential equations with solutions of the form

P(x) = ax". (1.24)

1.2.2 Terminology

Henceforth, we refer to the FD expressions introduced in Section 1.1 as
standard (S) FD expressions to distinguish them from the nonstandard (NS)
expressions introduced in this section.

Often, for the sake of notational simplicity, we drop the superscript “c”
for the central difference operators so that d° — d.

1.3 Standard Finite Difference Expressions for the Laplacian
We now omit the superscript “c” for the central difference operators, and
d, = d¢ for any variable u unless otherwise specified. The Laplacian operator
V2 = 2 + 97 + 02 has several different FD representations.

1.3.1 Two dimensions

In two dimensions, where V?=092+097, the most obvious FD
approximation is

2 d2
V() 2 5 /(%) (125

where d° = d% + d3; d, and d, are partial central difference operators of the
form in Eq. (1.8). Expanding d*f(x) gives
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Figure 1.3 Computational molecule for d°.

&f(x) =f(x+h y)+f(x=h y)+f(x, y+h)
and its computational molecule is depicted in Fig. 1.3; see Eq. (A1.1.17) for a
deeper analysis of the significance of d°.

Using the points diagonally adjacent to (x, y), we can construct another
second-order S-FD approximation given by

d/2
VI (x) = 5/ (%), (1.27)
where

20%1(x) =f(x+h,y+h)+f(x+hy—h)
+f(x=hy+h) +f(x—hy—h)—4f(x,y). (1.28)

The factor of 2 in Eq. (1.28) takes into account the distance from (x, y) to
(x * h, y £ h), which is #v/2. The computational molecule of d’? is shown in
Fig. 1.4.

Now let 0<g<1 be a parameter; then a family of second-order FD
approximations to V2 is

, g+ (1-g)d”?

\% 07

(1.29)

The computational molecule for d = gd® + (1 — g)d’* is shown in Fig. 1.5.
From the definition Eq. (1.11), we have the identity
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1/2 1/2

1/2 1/2

Figure 1.4 Computational molecule for d’2.

1-g % l-g
| / 2
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1-g ! 1-g
2 g 2

Figure 1.5 Computational molecule for d2 = gd? + (1 — g)d’2.

f(x+h) +1(x—h) = d>f(x) + 2f (x). (1.30)
Applying Eq. (1.11) to 2d"f(x) + 4f(x), we obtain

24721 (x) +4f (X) =f (x+h,y+h) +f(x—h,y+h)+f(x+h,y—h)
+f(x—h,y—h)
=d3[f (. y+h)+[(xy =] +2[f (x,p +h) +[(x,p —h)]
= d3[d5f (x,3) + 21 (x,)] +2[d5f (x,3) + 2/ (x,)]
= did5 [ (x,y) +2d3 +d)f (x,p) +4f (x,p). (1.31)
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Thus,

1
07 = di + dj + 5 d3d;

1
=& +5did}. (1.32)

See Eq. (A1.1.15) for a further analysis of the significance of d’>. Hence, the
most general S-FD operator for the Laplacian is

& =&+ ydids, (1.33)
where 1y is a parameter, and the most general S-FD approximation to V? is

V2f(x) & d—i/

3 (1.34)

The term d*h* is a valid approximation of V2 because lim,_,
(A% (x) /1] = V2f(x). Since Bdif(x) = h*o303/(x) + -, limy,_,
B (3) /I = iy 20203 ()] = 0 thus, Timyo[d2/ (x) /1] = V2 (x).
This is true regardless of the value of vy, so vy is a free parameter.

As we shall later see, when /% is not infinitesimal, the value of y can be
chosen such that the error of the finite difference expression is minimized with
respect to certain classes of functions.

1.3.2 Three dimensions
In three dimensions, d> = d2 + dﬁ +d? and

dzf(X) :f(x+h,y,z) +f(x—h,y,z) +f(x,y+h,z) +f(x,y—h,z)

+f(x,y,z+h) +f(x,y,z—h) —6f(x,y,2). (1.35)

"2

Now there are two additional FD operators, d’? and d”?, given by

4d”f(x) =f(x,y +h,z+h) +f(x,y —h,z+h)

+f(xy+hz—h)+f(x,y—h,z—h)
+f(x+hy,z+h)+f(x=hy,z+h)
+f(x+hy,z—h)+f(x—h,y,z—h)
+f(x+hy+hz)+f(x—hy+h,z2)
Ff(xthy—hz)f(x—hy—hz) — 12f(x,0,2),  (1.36)
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and

44" (x)=f(x+hy+h z+h)+f(x—h,y—h,z—h)
+f(x+hy—hz+h)+f(x—h,y+h,z—h)
+f(x—hy+hz+h)+f(x+h,y—h,z—h)
+f(x—hy—hz+h)+f(x+h,y+hz—h)=8f(x,y,z). (1.37)

Thus,
12
V2 ‘;1—2, (1.38)
"2
V2~ dh—z. (1.39)

Again using identity Eq. (1.30), it can be shown that

1
d? =d> + 3 (d3d3 + d3d? + d}d?), (1.40)
1 1
d”? =d> + 3 (d3d} + drd? + did?) + Zdidﬁd?, (1.41)

and the most general second-order FD operator for V2 in three dimensions is
& = & + y (B2 + B2d? + Bd2) + y,dd3d?, (1.42)

where y = (71, y») is arbitrary. The most general S-FD expression is thus

<LL

V2

IR

T8

(1.43)

1.4 Nonstandard Finite Difference Expressions for the
Laplacian

Since solutions of the wave equation and Maxwell’s equations can be expressed
in terms of Fourier components, it is of great interest to find FD expressions for
V2 that are accurate with respect to e**X, where k = (k,, ky, k).

In Section 1.2.1 it was shown that

d &% [k = Disin(kh/2) = d2eJek = _4sin?(kh)2)
and thus d2/s(h)* = 9%e'**, exactly, where s(h) = 2sin(kh/2)/k.
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Evaluating d’¢’***, we find that

dzeikox . . .
e = —4[sin?(kh/2) + sin®(k,h/2) + sin®(k.h/2)]; (1.44)
thus,
dZelkox ]
= VZelkex 1.45
SO kP e, (1.45)

exactly, where

4[sin2(kh/2) + sin?(k,h/2) + sin®(k.h/2)]
K2 ’

s(h,k)? = (1.46)
and k? = k> = k2 + k2 + k2.

Although Eq. (1.45) is an exact NS-FD expression, it is unsatisfactory
because it is exact only for one direction of k. We would like an expression
that is exact for all k directions. Unfortunately, this is impossible, but it is
possible to find an NS-FD expression that is much more accurate than the
S-FD expression of Eq. (1.25).

1.4.1 Two dimensions

Using the general S-FD operator d% given by Eq. (1.33), let us seek a value of
y such that dZe®** = —4sin?(k/1/2) e***, independently of the direction of k.
That is, we want

dz ikex (d?\ + d; + yd,%df,)e"k"‘

Yo + 4sin?(kh/2) = T +4sin?(kh/2)

e
=0 (1.47)
for some value of y. Evaluating the right side of Eq. (1.47), we obtain

d2 ikex L+ 4sin? (kh/z) _ 4[811’1 (kh/z) Sinz(kxh/z)

— sin?(k,h/2)] + 16ysin2(k h/2) sin?(k,h/2), (1.48)

where (k,, k,) = k(cos0, sinf)). The right side of Eq. (1.48) can be made to
vanish with the choice y = y(k,, k,), where

sin®(ky 1/2) + sin?(k, h/2) — sin®(kh/2)
4sin’ (k, h/2)sin’ (k, h)2)

Yk, ky) =

wky (1.49)



12 Chapter 1

Expanding Eq. (1.49) in a Taylor series about k4 = 0, we find that

1 . (kh)2 N (kh)4 |: 19 n COS(49):| o (1.50)

Y =6 180 16 [7560 1512
Although v is not independent of the k direction, its dependence is weak, and
thus for practical discretizations (0 < ki < 1), the fourth-order terms in k#,
O(kh)*, and higher orders, can be dropped, leaving
(kh)?
180 -

1
= — 1.1
y=¢t (1.51)

Now inserting y = 1/6 into Eq. (1.48) and expanding the right side in a
Taylor series about k4 = 0, we find that

/6 ) _
+ 4sin*(kh/2) = 1440

Next, taking y = 1/6 + (k/)*/180 in Eq. (1.48), we find that

[1 —cos(40)] + - -. (1.52)

eikox

d2 ikex
Yy 4sin’(khy2) =
e
(kh)S [ 127 11 |
T (30240 25200140 T gpgg eos®O)) e (153)

A simple calculation shows that the maximum deviation of dZe**x/e/kex
from —4 sin*(kh/2) is

2 ,ikex 11
Y ) _ 8
max| — G + 4sin (kh/2)‘ = 377560 (kh)®. (1.54)

We have shown®? that for =1y’ where y' = y(ki, k) and

(ki k}) = k(27/4v/1 — 271/2), the deviation from 4sin®(kh/2) is even further
reduced; however, in practical calculations, it is sufficient to take the value of
v given by Eq. (1.51), and often it is sufficient to use y = 1/6.

For practical purposes, dZe®**/e®*X = 4sin’(kh/2) is an excellent
approximation; thus, a nearly exact NS-FD approximation with respect
to kX is

2
&, (1.55)

V2
s(h)*”

IR

where s(h) = 2sin(kh/2)/k, as in the one-dimensional (1D) case. Defining the
relative error of the NS-FD approximation for V2 with respect to e’*** as



Finite Difference Approximations 13

1 d: .
ens(y) = V2 plkex [ Avie Vz] elkex

s(h)?

{4 sin?(kh/2) + d%} ekex

S — . , (1.56)
4 sin”(kh/2)e™*x
and expanding ens in a Taylor series about k& = 0, we find that
(1/6) = ()" [1 —cos(40)] + - - (1.57)
ENSUD) = 440 : '
6

exs(1/6+ (khy/180) — (K[ 1L cos(d6) cos@®)] — s

256 2520 270 1512

A simple calculation shows that the maximum error of the NS-FD Laplacian
expression is

max|ens[1/6 + (kh)2/180]| = ﬁ (kh)S. (1.59)

On the other hand, the error of the S-FD expression is

[

(kh)? cos(40)
T 16 {H 3 ]+

(1.60)

In conclusion, by cleverly combining second-order FD operators, we can
construct NS-FD expressions for V2e*** with up to sixth-order accuracy.

1.4.2 Three dimensions

The above developments in two dimensions can be extended to three. In
spherical coordinates (6 and @) k = k(sinfcose, sinfsing, cosf). The deviation
of d2e**x /e**X from —4sin’(kh/2) is
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2 ,ikex
dye
eikox

+4sin?(kh/2)

&+ &+ E 4N (BE + EE + EER) + BB
= +4sin(kh/2),

eikox
(1.61)

where y = (y1, v»). Expanding Eq. (1.61) in a Taylor series about k& = 0, we
find that

d2 ikex 4
5 L asin2(kh/2) = — (ch) (6y1 — 1)sin®(6)
elkox 48
) 12 _
sin (22(p +6) N sin (22(p 0) — sin?(2¢) + 7sin2(6) — 8
+ O(kh)6 4o (1-62)

Thus, setting y, = 1/6 causes the (kh)* term to vanish, regardless of the value
of y,. Now taking y = [1/6 + a(kh/2], y>) in Eq. (1.62), we seek « and 7y,
such that the (kh)® term vanishes. Carrying out expansion in Eq. (1.62) to
the sixth order in kh, we see that 9a + vy, + 1/6 = 0, which implies that
¥> = 9a — 1/6 so that the constant (non-angular dependent) part of the (kh)°
term vanishes. Setting y = (1/6 + a(kh/2)*, 9a — 1/6) in Eq. (1.62), we
find that

dZetkex . 5 1\ (kh)®
o + 4sin*(kh/2) = (a _E) a

x [sin*6sin®(2¢)(1 — 36cos?6) + sin?(26)] + - - -.
(1.63)

Thus, taking a = 1/45 eliminates the (kh)® term, leaving only higher-order
terms. Taking

2
yi= g+ WA (1.642)
1
" =35 (1.64b)
we obtain
d2 eikox
Y+ 4sin?(kh/2) = O(kh/2)3. (1.65)

eik-x
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We find that

ens|1/6 + (kh)?/180,1/30] = (kh/2)® x [complicated expressions in 6 and ).

(1.66)
On the other hand, the S-FD error is
es = (kh/2)* x [complicated expressions in 6 and ¢. (1.67)
Thus motivated, we now define the NS Laplacian operator to be
~ 1 (kh)? 1
2 _q2 . |4 DI RN N R A R v ) 3!
d_d—+&+1%]0u5+¢@+dﬁa+yﬂﬂﬁr (1.68)
In two dimensions, where d2 = 0, this definition reduces to
~ 1 (kh)?
2 _q2 . |1 2 7 1
d°=d + [6—1— ISO]dxdy' (1.69)

As we have seen, dgye"k"‘ /e = 4 sin?(kh/2) almost exactly for any practical
discretization when 0 < k/ < 1; hence,

ikex __ V2 ikox. 1.70

almost exactly, where s(h) = 2sin(kh/2)/k, and the error is O(kh)/28.

Note 1.1

Consider a medium in which the refractive index is piecewise constant,
ranging from n = 1 (the ambient medium) to n (in a “scatterer”), The local
wavenumber thus lies between ko and n¢ky. In many practical FDTD
calculations, it is sufficient to take

1 (koh)?

s 7Y L
#—d +[6+ ol

M@@+ﬁﬁ+@&)+%ﬁ@ﬁ, 1.71)

so that d” is not a function of position. In fact, for sufficiently small koh, we
can simply take

; 1 |
¥:¥+5@%%4y%4y9+%£@£. (1.72)

The last term of Eq. (1.72), although small, is needed to ensure the stability of
NS-FDTD.
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1.5 Factoring the Nonstandard Finite Difference Laplacian

To construct an NS-FD algorithm to solve Maxwell’s equations, we would
like to find a NS-difference operator d’, such that d’ e d’ = d?. Unfortunately,
this is impossible. Although d ed = d?, d’ does not exist, but we can find
d such that ded = d e d = d* (but d e d # d°).

1.5.1 Two dimensions

As we have seen, for function f(x,y), d.f = d,f/h. There is another FD
approximation given by d, f* = df /h, where

2df (x,y)=f(x+h/2,y+h)+f(x+h/2,y—h)
—[f(x—=h/2,y+h)+f(x—h/2,y —h)]. (1.73)

Similarly, 9,/ = d\.f /h, where

2dyf(x,y) =f(x+hy+h/2)+f(x—=hy+h/2)
—f(x+hy—=n/2)+f(x—hy—h/2)]. (1.74)

Using identity Eq. (1.30), it is easy to show that

1
df\,:dx<l+§df>, (1.75a)
/ 1 2
d,=d,|1 +§dx . (1.75b)
Forming the vector difference operator d’' = (d},d)) and defining
d = (d,,d,), we postulate the form d = d + a(dd3,d,d%), or
d,=d,+ad, (1.76a)
d,=d,+ad. (1.76b)

Requiring that d ed = d e d = d?, we find that

_ 1 (kh)?
T 360

(1.77)

1.5.2 Three dimensions

In three dimensions, besides d,f = d,f/h, there are two additional FD
expressions, d, f = d.f/h and 9, f = d!f /h, where
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4d' f(x,y,z) =f(x+h/2,y+h,z+h) +f(x+h/2,y+h,z—h)
+f(x+h/2,y—hz+h)+f(x+h/2,y—h,z—h)
—f(x=nh/2,y+hz+h)—f(x—=h/2,y+h,z—h)
—f(x—=nh/2,y—h,z+h)—f(x=h/2,y —h,z—h), (1.78)

Adlf (x,y,z) =f(x+h/2,y+h,z)+f(x+h/2,y —h,z)
+f(x+h/2,y,z+h)+f(x+h/2,y,z—h)
—f(x=h/2,y+hz)—f(x—h/2,y—h,2)
—f(x=h/2,y,z+h)—f(x—h/2,y,z—h). (1.79)

The corresponding difference operators for d,, and d. can be found by analogy
with .. Using Eq. (1.30), it can be straightforwardly shown that

L+d P
A —=d (14219 4G (1.80a)
2 4
Lt d: dd
d;:dy<1+ R ) (1.80b)
Lyd P
d=d (1450 GG (1.80¢)
2 4
and
d? + d?
d;;:dx<1+ y: ) (1.81a)
2 2
dy = dy<1 + & I dz), (1.81b)
d2 d2
d;’:dz<1+ XI y). (1.81¢)

Since we want the 3D form of d to reduce the 2D form for 4. = 0, we
postulate that

d.=d, [1 +a(d? + d?) + Bd;dz} , (1.82a)

d,=d, [1 +a(d?+d?) + Bd?xd?} , (1.82b)
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d. = d.[1 +a(d+d) + Bdgdg] , (1.82¢)

where « is given by Eq. (1.77). Again requiring thatd e d = d e d = d°, we find
that 8 = 1/90. Thus,

d.(d} +d?) d,(d3d?)
d=d+ i+(kh)2 d,(d% + d?) +i d(d>d?) (1.83)
127 360 yATx T 90 | VNTYTE '
d.(d% + d3) d.(d3d3)

where the column matrices represent vector difference operators. The 2D form
of d is obtained by setting d. = 0 in Eq. (1.83).
This formulation will be used in Chapter 10.

Important Points of Chapter 1

* We introduce the notation to be used throughout this book:
Central partial difference operator:

dof (x,y) =f(x+h/2,p) = [(x = h/2,p).
Second partial difference operator:
dd,=d3, dif(x,p) =f(x+hy)+f(x=hy)=2f(x,p).
Gradient difference operator:
standard: d = (d,, d,, d.); nonstandard: d = (dy d,, d.).
Laplacian difference operator:
standard: d> = d2 + df + d?;nonstandard: d> =ded=d ed.

* Useful expressions:

) k2 S
d ikx _ 2isin(kAx/2 d2 ikex
e isin(kAx/ )4sin2(kh/2) ¢

= V2e®*X almost exactly.

» There exist exact finite difference expressions for the derivatives of the
single-variable exponential functions.

* All finite difference expressions are equal (as 2 — 0), but some
finite difference expressions are more equal than others (for non-
infinitesimal /).
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Appendix 1.1 Mathematical Properties of Finite Difference
Operators

We can gain useful insights by more closely examining the relationship
between derivatives and finite difference expressions; this relationship also
yields some useful expressions.

A1.1.1 Forward finite difference operator

Letting n be a positive integer, we express the definition of the derivative in
the form

d St h/m) — f(x).

Ef(x):,li_{ﬁ hn (A1.1.1)
For large n,
f(x+h/n) = <1 +gax>f(x), (Al1.1.2)

where 0, = dldx.
Readers who are familiar with Lie group theory will recognize 9, to be the
generator of translations. Iterating Eq. (A1.1.2), we find that

f(x+2h/n) = <1 +%8x>f(x+h/n)

h 2
= <1—|—;6x) f(x). (A1.1.3)
By induction, we obtain
h n
f(x+h) = <1+Zax> f(x), (Al1.1.4)
and in the limit n — oo,
f(x+h) = ef(x). (A1.1.5)

Equation (A1.1.5) is the Taylor series expansion of f{x + /) about x, and e/
is the Lie group element that produces the translation x — x + /.
Thus, the forward difference d'.f(x) = f(x + h) — f(x) is given by

dif(x) = (" — 1)f (x); (A1.1.6)
hence,
dl. = e — 1

1 1
:hax+5hza§+§h3a§+---. (A1.1.7)
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Solving for 9, in terms of FD operators, we obtain

5 ~In(1+dY)
T h
e (@) (d)
= | -S| (A1.1.8)

Thus, the differential equation 9,.f(x) = g(x) is equivalent to the
difference equation [df — (d%)?/2 £ ---]f(x) = hg(x); likewise, the difference
equation d'f(x) = hg(x) is equivalent to the differential equation
[0 +ho2/2+--]f(x) = g(x). It is therefore not surprising that the solution
of a differential equation generally differs from that of its difference equation
model.

A1.1.2 Central finite difference operator

We can derive similar expressions for the central FD operators. Using the
results above, we find that

ds = [e/2) — o=(1/2)0] £(x)
= 2sinh[(h/2)d.]f (x). (A1.1.9)

Hence, the central FD operator can be expressed in terms of derivatives as
d$ = 2sinh[(h/2)d,]

1 1
_ 343 595
= hiy + 5703 + 155105 (A1.1.10)

It is easily seen from the above that
(d%)* = 4sinh?[(h/2)d,]

1 1
=h2a§+ﬁh4ai+%hﬁa§+m. (A1.1.11)

Solving Eq. (A1.1.11) for d,, the expansion of the derivative in terms of
central FD operators is

= %ZSinhl(di/Z)
_l de —i(a’c)3 +i(dc)5 T .. (Al1.1.12)
T T 24\ Teap T o
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From Eq. (A1.1.12), we find that

7= 4sinh ! <d§/2>12

1

— 5 |27 -

(d;)“ +—(d)oF - |. (A1.1.13)

12 %(

A1.1.3 Multiple variables

Equation (A1.1.5) can be generalized to the case of several variables:
f(x+hgy+h, +z4h)=en0thothif(x y ). (A1.1.14)
For example, 2d’*f(x) in Eq. (1.28),

2021 (x) =f(x+h,y+h)+f(x+hy—h)

+f(x_hay+h) +f(x_h7y_h) _4f(x9y)7
is equivalent to

2d/2f( ) [ hd +hd, 1 (hd +hd,) 4 ehd —ha, R —(hd—hd,) _ 4]f(x, )/)
= 2[cosh(hd, + hd,) + cosh(hd, — hd,) — 2] f(x, )

:{ az+az +h4{ (a4+a4)+lazaz]+---}f(x,y).

12 2
(A1.1.15)
On the other hand,
&f(x) =f(x+hy) +f(x = hy) +f(xy+h)
+f(x,y = h) —4f(x, ) (A1.1.16)

is equivalent to

4%/ (x) = [eh0 4 e 4 ehiy 4 eh0r — 4] f(x, y)
= 2[cosh(hd,) + cosh(hd,) — 2] f(x, y)

{ a2+a2 112h4(a4+a4)+ }f(x,y). (A1.1.17)

Appendix 1.2 Noninteger-Order Sums and Differences

Except for Note A1.2.1, this Appendix 1.2 is not directly relevant to the main
text. We include it as a reference for those interested in modeling phenomena
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outside the scope of this book. Certain physical phenomena (such as quantum
entanglement) appear to be nonlocal, and it is interesting to note that
noninteger-order differences and sums are also nonlocal.

Sums and differences can be extended to noninteger-order and are useful
in modeling stochastic processes such as Brownian motion. Interesting insight
can be gained by examining these generalizations.

Note that in this appendix, d denotes the forward finite difference.

A1.2.1 Noninteger-order summation
Let x = xh and f,, = f(xh), and define the summation operator by

Sfly = Xifi (A1.2.1)
i=0
in the limit .
ki_r)r(l) h ST = ;')[dlf(t), (A1.2.2)
defining the double summation
Sy = Xi if 2 (A1.2.3)
i=0 j=0

where y > 2. Notice that in the second sum, ;j runs from 0 to 7, not to i — 1.
In the limit

X t
lim 1252 [} = [ae [arra, (A1.2.4)
- 0 0

by definition,
0

> f=fo

J=0

1
ij =fo+/1
Jj=0

2
S fi=So+ 1+

J=0

(A1.2.5)
thus,

Ji=xot+ =DM+ =22+ +/ 1 (A1.2.6)
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and hence,
x—1

SIS = (x =il (A1.2.7)

i=0
Notice the similarity of Eq. (Al.2.7) to the two-fold integral
Pfls = Jydt (x — 1) f (1) given by Eq. (A2.2.3).

Evaluating the triple summation

— i

J
Sy = ZZZf (A1.2.3)

i=0 j=0 k=0
we find that
i
fe=ro
=0 k=0
+fo+/1
+fo+f1+/2
+

+fot+f1+ 0+ fi
=@+ fo+ifi+T—-1Df s+ +f4

= Z(, +1=))f; (A1.2.9)
=0
Thus,

i
Sk =7o

=0 k=0

—_

>

I}
o

+2f0 + fi
+3f0 +2f1 +/>

+xfo+ =D i+x=2)2+ " +/

:fO(XJrzl)erle(Xz—1)+f2(x—l)z(x—2)+... o
2XZ + 1= (x—fs (A1.2.10)
i=0

Therefore,
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x—1 _
S = IZ Xﬂ i } (A1.2.11)
1:0 o

By induction, we obtain

Snf|X —

Ny (A1.2.12)

Substituting I' functions in place of the factorial functions, and using
I'(n) = (n — 1), noninteger-order summation for n > 0 is defined by

. 1 Ar i
S’?\er(mg (X;;_i) oy (A1.2.13)

Note A1.2.1
The T function® is defined by

— [are-1r (A1.2.14)
0

This definition is valid for noninteger arguments. When n»>1 is an integer,
I'(n) = (n — 1)! The Taylor expansion of 1/T'(x) about n = 0 is

1

W:)H_..-, (A1.2.15)
hence, .

lxli%f‘( ] =0. (A1.2.16)

From Eq. (A1.2.13), we have

1 [I(N-1) I'(N -2) I'(N —3) i)
S =10 | v v Tty 2t T

(A1.2.17)

and using Eq. (A1.2.16), we find that

SIS =11 (A1.2.18)
One might have hoped that S°f|¥ would be f, so that S° would be the identity
operator 1. However, lim,_of(xh —h) = f(xh) = lim,_of,_| = f,; thus,

limy,_oS°f[§ = f,, and, hence,

lim 5° = 1. (A1.2.19)
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If the upper limit of the summation in Eq. (A1.2.1) were to taken to be y instead
of x — 1, we would have S|t = /> but this would give (see Section Al.2.2)
ds’fi¥ =r v+1 instead of £, (where df, = f, ;1 — f,); thus, d would not be the
inverse of S.

Example 1

Letting f{x) = x, Sf|} = hZfz_Ol i is the summation of an arithmetic series.
S2f1X is given by

h STy —i—1/2)

S1/2 X :
=T & T
=h : — ]2 - 11, (A1.2.20)
5 (x—i— 1) T LY
where
'n—1/2) 1 %5
=~ [[l2m -1 (A1.2.21)
r(1/2 2 11:[0

Taking y = 5 and 4 = 1, we obtain the weighted sum,
3-5-7 3-5 3

SVl =35 1ty 2t 34
35 15 3
= e ltg 25314 (A1.2.22)

Example 2

Taking f'(x) = sin(wx/2.1)/e*//x +1 — (1 —e/3%)/x, x = 10, and h = 1,
we plot S"f])" versus n in Fig. A1.2.1. Here, n is real (not necessarily an
integer); obviously, the noninteger sum is a smooth generalization from
integer-order summation to noninteger-order summation.

A1.2.2 Noninteger-order differences

The forward finite difference operator d acting on f'is defined by

dfy=fye1 =1y (A1.2.23)

Iterating Eq. (A1.2.23) n fold, it is easy to show that
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10

S fo
A
+10
-10 : —_— > 71
0 4

Figure A1.2.1 The integer and noninteger-order sums of Example 1.2. Dots denote
integer-order sums, and lines denote noninteger-order sums.

ng S (_l)fn'
d f)( - ;m/{)ﬁtnfﬁ (A1224)

where n > 0 is an integer.

Note A1.2.2

The substitution f(x) = f(x —nh/2) = fin_r = [yrm2)—¢ In Eq. (A1.2.24)
yields the n'™ central difference. d*f\ = fys12 —f y-12, and

(d)f =Fys1 =2y + et (A1.2.252)
@V f y =Fr3n = 12+ xm12 —Fy=32 (A1.2.25Db)
(d)fy =Sy =41 + 6y =41 + /2 (A1.2.25¢)
etc.

Evaluating Eq. (A1.2.24) for n = 0 gives dofx = f,s hence,
d’° =1. (A1.2.26)
It is easy to show that dSf|§ = f, = dS = 1. Thus, d is the left inverse of S:
d= Sy (A1.2.27)

However, Sd # dS, thus, Sd # 1; instead,

x—1
SAfIS = [fri1 =1
7=0

=fx—Jo (A1.2.28)

Note A1.2.3

If the upper limit of the summation in Eq. (A1.2.1) had been taken to be y
instead of y — 1, then we would have had dSf[§ = f, 1, and d would not be
the left inverse of S.
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We now proceed to extend the difference operation defined in
Eq. (A1.2.24) to noninteger values. Simply replacing the factorial terms with
I' functions does not yield a useful definition. Instead, we make use of
noninteger-order summation. Taking 0 <v < 1, we define

d" = dd"' = dd-0-") = ds', (A1.2.29)

where 0™ = S§'” because d is the left inverse of S. Thus, from

Eq. (A1.2.13),

dvf)(—r(l_v)di=0 o=
v ET(y-v-i)
_fX F(l — V) pary F(X 4 1— l)fl (A1230)

Setting v =0 in Eq. (A1.2.30), we find that 4%, =f, =>d" =1, in
accordance with Eq. (A1.2.26).

Next, using Eq. (A1.2.29), let us evaluate d'f, = lim,_,dS'"/¥, using
SOf X =fy-1 =f -1 from Eq. (A1.2.18). This yields

dfv=fy —Fy-1> (A1.2.31)

which contradicts the definition in Eq. (A1.2.23). The definition of a
noninteger (»'")-order difference [Eq. (A1.2.28)] is thus inconsistent with the
definition of the integer-order difference in the limit v = n — 1. However,
since

hmf)( _f)(—l _ limf)(-‘rl _f)( _
h—0 h h—0 h

(%), (A1.2.32)

d”, as defined by Eq. (A1.2.29), does converge to d in the double limits 2 — 0
and v — 1; that is,
lim(lim d”) = d. (A1.2.33)
h—0 v—1
One could try to redefine the sum and difference operators to make
lim,_;d” = d even when / is not infinitesimal, but this approach leads to
much more complicated expressions that are not intuitively obvious.
For noninteger n 4+ v, where n > 0 is an integer and 0 < v < 1 is real, we
define ¢’ ™" in two steps by

g, =df,. (A1.2.342)
df, = dvg,, (A1.2.34b)
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where d"f, is computed using Eq. (A1.2.24), and d"g, is computed using
Eq. (A1.2.30).

While for integer n, d"f, depends only on the values of £, ,  in the range
0<i<n, d"""f, depends on all the values of f; in the range 0 <i <y + n.

Example 3

Let y = 5, h = 1, and f(x) =x7; then, df, = 2xh + h*. Using Eqgs. (A1.2.29)
and (A1.2.30) together with Eq. (A1.2.21), we find that

2y ) —1—1/2)

A= T 21 1/2 —

—

X—

= - FiTe 1H|2J —1 (A1.2.35)

I
S
A

Example 4

Let f(x) = 10¢!Ssin(7x/8) and 1 < y <32, and plot d "f versus x for different
values of n. Figure A1.2.2 shows that as 0 < & — 0, lim,_, d"**f, = d"f, but
lim,_o 9"~¢f, # d*f . For example, d*°'f, = d*f,, but d"°f , & d*f .

Further details on noninteger sums and differences can be found in Ref. 4.

n=220 2
n=2.00

n=£§0

n=2.01

n=2.00 N
n=199 I ]
B e

Figure A1.2.2 Integer and noninteger-order differences.
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