The instrument FRIDA (inFRared Imager and Dissector for Adaptive optics) is an integral field spectrograph (near infrared) operating at the wavelength range of 0.9 to 2.5um with imaging capability for being used at the Nasmyth B platform of the Gran Telescopio de Canarias (GTC). FRIDA is a collaborative project led by the Instituto de Astronomía Universidad Nacional Autónoma de México (IA-UNAM, México) with the collaboration of the Instituto de Astrofísica de Canarias (IAC, Spain), Centro de Ingeniería y Desarrollo Industrial (CIDESI, México), the University of Florida (UF, USA), and the Universidad Complutense de Madrid (UCM, Spain). In imaging mode, FRIDA will provide scales of 0.010, 0.020 and 0.040 arcsec/pixel and, in IFS mode, spectral resolutions of R 1000, 4.500 and 30.000. FRIDA is the first GTC instrument to use the telescope Adaptive Optic (AO) system and it is rescheduled to be delivered to GTC shortly in 2020. Since FRIDA is a GTC instrument, the high-level control software of FRIDA is embedded within the distributed architecture of the System Control of GTC (GCS) and must fulfill the GCS software and hardware standards to control the telescope and the AO system. This paper shows an overview of the high-level control software components of FRIDA inside the GCS architecture. The main components are the Mechanisms Control System whose primary task is to control the mechanisms of FRIDA, the Data Acquisition System that interacts with the detector to take image, the Data Factory Agent whose task is to provide quality control for both engineering and scientific data, the Instrument Library component responsible for operating the devices associated to FRIDA and the Observation Manager component responsible for the execution of the observing sequences in close coordination with the GTC AO system.
|