First, we focused on methodologies that can detect oil pollution in an unsupervised manner. Based on the assumption that such oil pits are rare events in the image, statistical approach for anomalies detection, derived from the Reed-Xiaoli detector, is used. In order to decrease the number false alarms, some a priori knowledge about the spectral signature of the pits and about the background is introduced. This approach succeeds in detecting the pit with very few false alarms. Hydrocarbon pollution can have an impact on vegetation and leads to change in vegetation (bio)physical parameters (pigments, water content, …), according to species, pollutant type and exposition time . In order to map the polluted area without any a priori knowledge, several un-supervised classification, including an original method of automatic classification combining unmixing approach and SVM (support Vector Machine) are applied and compared. The results are compared with a partial “ground truth map” that has been derived from visual observations on the field, and with areas of stressed vegetation that have been mapped using combination of specific spectral indices. The classification results are consistent with the ground truth map and the retrieved stressed vegetation areas. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
![Lens.org Logo](/images/Lens.org/lens-logo.png)
CITATIONS
Cited by 4 scholarly publications.
Vegetation
Reflectivity
Short wave infrared radiation
Pollution
Hyperspectral imaging
Absorption
Cameras