Presentation + Paper
4 March 2019 Optimization trades for a multi-aperture laser communications ground terminal
Author Affiliations +
Proceedings Volume 10910, Free-Space Laser Communications XXXI; 109100J (2019) https://doi.org/10.1117/12.2509127
Event: SPIE LASE, 2019, San Francisco, California, United States
Abstract
The most important single attribute of a Laser Communications Ground Station is the receiver aperture area to maximize the received signal and hence signal-to-noise ratio (SNR). However, the larger the aperture, the greater the negative effects imparted by the atmosphere on the signal, thus causing signal fading and negatively effecting SNR. To mitigate the atmospheric effects of a large aperture, adaptive optics are needed. It has been previously proposed to use a number of smaller telescopes with only simpler tip/tilt correction with non-coherent power combining as a lower cost way to achieve the benefits of a large signal energy capture area without the significantly higher cost of a single large telescope with adaptive optics. This paper will investigate optimal trades of the number and size of individual telescopes to achieve a desired signal capture area of a single large telescope with adaptive optics. The cost of the telescopes, extra beam combining, and especially the atmospheric effects as a function of the size of a telescope with only tip/tilt correction will be addressed.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. Garnham, P. Shubert, and J. McNally "Optimization trades for a multi-aperture laser communications ground terminal", Proc. SPIE 10910, Free-Space Laser Communications XXXI, 109100J (4 March 2019); https://doi.org/10.1117/12.2509127
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Telescopes

Adaptive optics

Large telescopes

Laser communications

Cameras

Short wave infrared radiation

Atmospheric optics

RELATED CONTENT


Back to Top