Over the past years, light detection and ranging (lidar) technologies have been investigated and commercialized for various applications such as autonomous vehicles, terrestrial mappings, and precision measurements. Currently, the frequently used ranging methods are the pulsed time of flight (PToF) and frequency modulated continuous wave (FMCW) lidars that relies on frequency sweeping to capture range and velocity information. We have previously developed and demonstrated the multi-tone continuous wave (MTCW) that operates by employing amplitude modulation via multiple radio frequencies (RF) and coherent detection. Here, we present a theoretical and experimental study on phase-based MTCW lidar that can detect the range and velocity of objects with arbitrary velocities. The experiments demonstrate that the phase and frequency of the Doppler-shifted fixed RF tones can be used to extract the range and velocity information in a single shot measurement. We show that a <±1cm resolution in the ranging, limited by the temporal resolution of the detection system, and a 0.5cm/s speed resolution is limited by the frequency resolution of the detection system are achievable. Moreover, the proposed approach has the potential to mitigate the requirement for a narrow linewidth laser for coherent detection.
|