Presentation + Paper
4 April 2022 Feasibility of combined optical and acoustic imaging for surgical cavity scanning
Author Affiliations +
Abstract
PURPOSE: Over 30% of breast conserving surgery patients must undergo repeat surgery to address incomplete tumor resection. We hypothesize that the addition of a robotic cavity scanning system can improve the success rates of these procedures by performing additional, intraoperative imaging to detect left-over cancer cells. In this study, we assess the feasibility of a combined optical and acoustic imaging approach for this cavity scanning system. METHODS: Dual-layer tissue phantoms are imaged with both throughput broadband spectroscopy and an endocavity ultrasound probe. The absorbance and transmittance of the incident light from the broadband source is used to characterize each tissue sample optically. Additionally, a temporally enhanced ultrasound approach is used to distinguish the heterogeneity of the tissue sample by classifying individual pixels in the ultrasound image with a support vector machine. The goal of this combined approach is to use optical characterization to classify the tissue surface, and acoustic characterization to classify the sample heterogeneity. RESULTS: Both optical and acoustic characterization demonstrated promising preliminary results. The class of each tissue sample is distinctly separable based on the transmittance and absorption of the broadband light. Additionally, an SVM trained on the temporally enhance ultrasound signals for each tissue type, showed 82% linear separability of labelled temporally enhanced ultrasound sequences in our test set. CONCLUSIONS: By combining broadband and ultrasound imaging, we demonstrate a potential non-destructive imaging approach for this robotic cavity scanning system. With this approach, our system can detect both surface level tissue characteristics and depth information. Applying this to breast conserving surgery can help inform the surgeon about the tissue composition of the resection cavity after initial tumor resection.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Laura Connolly, Amoon Jamzad, Arash Nikniazi, Rana Poushimin, Jean Michel Nunzi, John F. Rudan, Gabor Fichtinger, and Parvin Mousavi "Feasibility of combined optical and acoustic imaging for surgical cavity scanning", Proc. SPIE 12034, Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling, 120341H (4 April 2022); https://doi.org/10.1117/12.2611964
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tissue optics

Tissues

Imaging systems

Acoustics

Breast

Optical imaging

Surgery

Back to Top