The Resolve instrument was launched on-board the XRISM observatory in early September 2023. The Resolve spectrometer is based on a high-sensitivity X-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. However, the Resolve instrument will be the first long-term implementation in space. The instrument will provide essential diagnostics for nearly every class of X-ray emitting objects, from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The Resolve detector system consists of a 36-pixel microcalorimeter array operated at a heat-sink temperature of 50mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV and a timing precision better than 100 μs. An anti-coincidence detector placed directly behind the microcalorimeter array effectively suppresses background. The detector energy-resolution budget included terms for interference from the Resolve cooling system and the spacecraft. Additional terms for energy-scale stability, on-orbit effects, and use of mid-grade events were also included, predicting an end-of-life, on-orbit performance for high and mid-grade events that meets the requirement of 7 eV FWHM at 6 keV. Here we discuss the actual on-orbit performance of the Resolve detector system and compare this to performance in pre-flight testing, on-orbit predictions, and the almost identical Hitomi/SXS instrument. We will also discuss the on-orbit gain stability, any additional on-orbit interference, and measurements of the on-orbit background.
|