Paper
1 September 1995 Large-area submillimeter resolution CdZnTe strip detector for astronomy
James M. Ryan, John R. Macri, Mark L. McConnell, Brian K. Dann, Michael L. Cherry, T. Gregory Guzik, F. Patrick Doty, Boris A. Apotovsky, Jack F. Butler
Author Affiliations +
Abstract
We report the first performance measurements of a sub-millimeter CdZnTe strip detector developed as a prototype for space-borne astronomical instruments. Strip detector arrays can be used to provide two-dimensional position resolution with fewer electronic channels than pixellated arrays. Arrays of this type and other candidate technologies are under investigation for the position-sensitive backplane detector for a coded-aperture telescope operating in the range of 30 - 300 keV. The prototype is a 1.4 mm thick, 64 multiplied by 64 stripe CdZnTe array of 0.375 mm pitch in both dimensions, approximately one square inch of sensitive area. Pulse height spectra in both single and orthogonal stripe coincidence mode were recorded at several energies. The results are compared to slab- and pixel-geometry detector spectra. The room-temperature energy resolution is less than 10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio greater than 5:1. The response to photons with energies up to 662 keV appears to be considerably improved relative to that of previously reported slab and pixel detectors. We also show that strip detectors can yield spatial and energy resolutions similar to those of pixellated arrays with the same dimensions. Electrostatic effects on the pulse heights, read-out circuit complexity, and issues related to design of space borne instruments are also discussed.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James M. Ryan, John R. Macri, Mark L. McConnell, Brian K. Dann, Michael L. Cherry, T. Gregory Guzik, F. Patrick Doty, Boris A. Apotovsky, and Jack F. Butler "Large-area submillimeter resolution CdZnTe strip detector for astronomy", Proc. SPIE 2518, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VI, (1 September 1995); https://doi.org/10.1117/12.218403
Lens.org Logo
CITATIONS
Cited by 23 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Prototyping

Spatial resolution

Photons

Astronomy

Image resolution

Signal processing

Back to Top