Paper
2 July 1997 Fluorescence of crop residue: postmortem analysis of crop conditions
James E. McMurtrey III, Moon S. Kim, Craig S. T. Daughtry, Lawrence A. Corp, Emmett W. Chappelle
Author Affiliations +
Abstract
Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy optimal plant growth condition for specific areas of the field for the next growing season may be useful indicators for crop management. Analysis of plant constituent qualities and quantities of dead crop materials during the harvesting practice or after harvest could be useful indicators of the previous crop's conditions. These measures could be used as a tool in determining precision farming management practices for site specific areas in a field.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James E. McMurtrey III, Moon S. Kim, Craig S. T. Daughtry, Lawrence A. Corp, and Emmett W. Chappelle "Fluorescence of crop residue: postmortem analysis of crop conditions", Proc. SPIE 3059, Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, (2 July 1997); https://doi.org/10.1117/12.277601
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Laser induced fluorescence

Nitrogen

Ultraviolet radiation

Agriculture

Cerium

Microorganisms

Back to Top