Paper
23 September 1999 Geometric hashing and object recognition
Peter F. Stiller, Birkett Huber
Author Affiliations +
Abstract
We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter F. Stiller and Birkett Huber "Geometric hashing and object recognition", Proc. SPIE 3811, Vision Geometry VIII, (23 September 1999); https://doi.org/10.1117/12.364094
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
3D image processing

Databases

3D modeling

Data modeling

Object recognition

Matrices

Detection and tracking algorithms

Back to Top