Paper
21 April 2003 Integer cosine transform chip design for image compression
Gustavo A. Ruiz, Juan A. Michell, Angel M. Buron, Jose M. Solana, Miguel A. Manzano, J. Diaz
Author Affiliations +
Proceedings Volume 5117, VLSI Circuits and Systems; (2003) https://doi.org/10.1117/12.498771
Event: Microtechnologies for the New Millennium 2003, 2003, Maspalomas, Gran Canaria, Canary Islands, Spain
Abstract
The Discrete Cosine Transform (DCT) is the most widely used transform for image compression. The Integer Cosine Transform denoted ICT (10, 9, 6, 2, 3, 1) has been shown to be a promising alternative to the DCT due to its implementation simplicity, similar performance and compatibility with the DCT. This paper describes the design and implementation of a 8×8 2-D ICT processor for image compression, that meets the numerical characteristic of the IEEE std. 1180-1990. This processor uses a low latency data flow that minimizes the internal memory and a parallel pipelined architecture, based on a numerical strength reduction Integer Cosine Transform (10, 9, 6, 2, 3, 1) algorithm, in order to attain high throughput and continuous data flow. A prototype of the 8×8 ICT processor has been implemented using a standard cell design methodology and a 0.35-μm CMOS CSD 3M/2P 3.3V process on a 10 mm2 die. Pipeline circuit techniques have been used to attain the maximum frequency of operation allowed by the technology, attaining a critical path of 1.8ns, which should be increased by a 20% to allow for line delays, placing the estimated operational frequency at 500Mhz. The circuit includes 12446 cells, being flip-flops 6757 of them. Two clock signals have been distributed, an external one (fs) and an internal one (fs/2). The high number of flip-flops has forced the use of a strategy to minimize clock-skew, combining big sized buffers on the periphery and using wide metal lines (clock-trunks) to distribute the signals.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gustavo A. Ruiz, Juan A. Michell, Angel M. Buron, Jose M. Solana, Miguel A. Manzano, and J. Diaz "Integer cosine transform chip design for image compression", Proc. SPIE 5117, VLSI Circuits and Systems, (21 April 2003); https://doi.org/10.1117/12.498771
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Printed circuit board testing

Image processing

Image compression

Signal processing

Clocks

Computer architecture

Standards development

Back to Top