Paper
17 May 2005 Smart RC elements for long-life monitoring of civil infrastructures
Daniele Zonta, Matteo Pozzi, Marco Forti, Oreste S. Bursi
Author Affiliations +
Abstract
A research effort has been launched at the University of Trento, aimed at developing an innovative distributed construction system based on smart prefabricated concrete elements allowing for real-time condition assessment of civil infrastructures. So far, two reduced-scale prototypes have been produced, each consisting of a 0.2 by 0.3 by 5.6m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optics Sensors (FOS) at the lower edge. The sensors employed are Fiber Bragg Grating (FBG) -based and can measure finite displacements both in statics and dynamics. The acquisition module uses a single commercial interrogation unit and a software-controlled optical switch, allowing acquisition of dynamic multi-channel signals from FBG-FOS, with a sample frequency of 625 Hz per channel. The performance of the system underwent validation I n the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including concrete cover spalling and partial corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. This paper presents in detail the results of the experiment and demonstrates how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniele Zonta, Matteo Pozzi, Marco Forti, and Oreste S. Bursi "Smart RC elements for long-life monitoring of civil infrastructures", Proc. SPIE 5765, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, (17 May 2005); https://doi.org/10.1117/12.600578
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Bridges

Fiber Bragg gratings

Sensing systems

Damage detection

Prototyping

Calibration

Back to Top