Paper
11 April 2006 Dynamic displacement measurement of bridges using vision-based system
Author Affiliations +
Abstract
Measuring the displacement of flexible bridges directly is difficult particularly on monumental suspension bridges. Since these bridges cross over sea channels or large rivers, installation of conventional devices for displacement measurement is technically not easy and costly, if not impossible. In this study, real-time displacement measurement of bridges was carried out by means of digital image processing techniques. This is innovative, highly cost-effective and easy to implement, and yet maintains the advantages of dynamic measurement and high resolution. First, the measurement point is marked on the bridge with a target panel of known geometry. A commercially available digital video camcorder is installed on a fixed point some distance from the bridge (e.g. on the coast) or on a pier (abutment) of the bridge which can be regarded as a fixed point. The camcorder with a telescopic device installed takes a motion picture of the target marked. Meanwhile, the displacement of the target is calculated using an image processing technique, which requires a target recognition algorithm, projection of the captured image, and calculation of the actual displacement using target geometry and the number of pixels moved. To measure the displacement at multiple locations on the bridge, an effective synchronized vision-based system was developed using master/slave system and wireless data communication. For the purpose of verification, the measured displacement by synchronized vision-based system was compared with the data measured by a contact-type sensor, a linear variable differential transformer (LVDT) from laboratory tests. The displacement measured by the proposed method showed a good agreement with the data from the conventional sensors. A field test on a pedestrian suspension bridge was also carried out to check the feasibility of the proposed system.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jong-Jae Lee, Yoshio Fukuda, and Masanobu Shinozuka "Dynamic displacement measurement of bridges using vision-based system", Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 617437 (11 April 2006); https://doi.org/10.1117/12.659071
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Bridges

Sensors

Target recognition

Digital image processing

Image processing

Global Positioning System

Clocks

Back to Top