Paper
11 December 2006 Determination for regional differences of agriculture using satellite data
Author Affiliations +
Abstract
Remote Sensing Laboratory, Field Science Center, Graduate School of Agriculture Science, Tohoku University starts at April 2004. For studies and education at the laboratory we are now developing the system of remote sensing and GIS. Earth Remote Sensing Data Analysis Center (ERSDAC) made the Home Pages of Terra/ASTER Image Web Library 3 "The Major Airport of the World." http://www.Ersdac.or.jp/ASTERimage3/library_E.html. First, we check the Airport Data to use agricultural understanding for the world. Almost major airport is located in rural area and surrounded with agriculture field. To survey the agriculture field adjacent to the major airport has almost the same condition of human activities. The images are same size and display about 18km X 14km. We can easily understand field size and surrounding conditions. We study seven airports as follows, 1. Tokyo Narita Airport (NRT), Japan, 2. Taipei Chiang kai Shek International Airport (TPE), Taiwan, 3. Bangkok International Airport (BKK), Thailand, 4. Riyadh King Khalid International Airport (RUH), Saudi Arabia, 5. Charles de Gaulle Airport (CDG), Paris, France, 6. Vienna International Airport (VIE), Austria, 7. Denver International Airport (DEN), CO, USA. At the area of Tokyo Narita Airport, there are many golf courses, big urban area and small size of agricultural fields. At Taipei Airport area are almost same as Tokyo Narita Airport area and there are many ponds for irrigations. Bangkok Airport area also has golf courses and many ponds for irrigation water. Riyadh Airport area is quite different from others, and there are large bare soils and small agriculture fields with irrigation and circle shape. Paris Airport area and Vienna Airport area are almost agricultural fields and there are vegetated field and bare soil fields because of crop rotation. Denver Airport area consists of almost agriculture fields and each field size is very large. The advantages of ASTER data are as follows, 1. High-resolution and large swath, 2. Large wavelength and many bands, 3. High-revel of geographical location, 4. Stereo pair images, 5. High performance data searching system, 6. High speed data delivery system, 7. Cheap price, 8. Seven years observation and large volume archive. A kind of project "Determination of Local Characteristics at Global Agriculture Using Archive ASTER Data" was started at middle of November 2005. We establish data processing system and get some results. Paddy rice fields analysis was started at first, we analyze 1) the Shonai Plains in Japan, 2) the Yangtze River delta in Middle-East China, 3) Mekong Delta in South Vietnam, 4) North-east Thai Plaines, Thailand, 5) Sacrament Valley, California, USA. The results of this studies are as follows, 1) Using ASTER images, we can easily understand agricultural characteristics of each local area. 2) ASTER data are high accuracy for location, and the accuracy is suitable for global study without the fine topographical maps, 3) By five years observation of ASTER, there is huge numbers of ASTER scenes, but not enough volumes for cloud free data for seasonal analysis. It means that follow-on program of ASTER is necessary, 4) We need not only paddy field, but also all crop fields and all area, 5) The studies are necessary to international corroboration.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
G. Saito "Determination for regional differences of agriculture using satellite data", Proc. SPIE 6411, Agriculture and Hydrology Applications of Remote Sensing, 641105 (11 December 2006); https://doi.org/10.1117/12.693979
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Agriculture

Remote sensing

Geographic information systems

3D image processing

Data archive systems

Data processing

Sensing systems

Back to Top