Paper
4 October 2007 SERS beacons for multiplexed oligonucleotide detection
Author Affiliations +
Abstract
Gold-based surface-enhanced Raman scattering (SERS) beacons have been developed, which represent a simple, biocompatible and rapid means of performing multiplexed DNA sequence detection in a non-arrayed format. These SERS beacons consist of a simple stem-loop oligonucleotide probe in its native form with one end attached to a SERS active dye molecule and the other to a gold nanoparticle, approximately 50 nm in diameter. The probe sequence is designed to achieve a stem-loop structure, with the loop portion complementary to the target sequence, similar to fluorescent molecular beacons. In the absence of the target DNA sequence, the SERS signal of the associated dye molecule is detected, representing the "ON" state of the probe. When the target sequence is hybridized to the probe, which results in an open conformation, its respective reporter dye is separated from the gold nanoparticle, producing diminished SERS signal. In this paper, the fabrication and characterization of these SERS beacons is described. We also demonstrate selective hybridization of a target sequence to one beacon in a mixture, revealing their potential for use in a multiplexed fashion.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jian Sun and Brian M. Cullum "SERS beacons for multiplexed oligonucleotide detection", Proc. SPIE 6759, Smart Biomedical and Physiological Sensor Technology V, 67590F (4 October 2007); https://doi.org/10.1117/12.730450
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Nanoparticles

Gold

Absorption

Sodium

Multiplexing

Target detection

Molecules

Back to Top