Paper
4 June 2014 Point and standoff detection of trace explosives using quantum cascade lasers
Seonghwan Kim, Dongkyu Lee, Xunchen Liu, C. W. Van Neste, Thomas Thundat
Author Affiliations +
Abstract
Chemical sensors based on micro/nanoelectromechanical systems (M/NEMS) offer many advantages. However, obtaining chemical selectivity in M/NEMS sensors using chemoselective interfaces has been a longstanding challenge. Despite their many advantages, M/NEMS devices relying on chemoselective interfaces do not have sufficient selectivity. Therefore, highly sensitive and selective detection and quantification of chemical molecules using real-time, miniature sensor platforms still remains as a crucial challenge. Incorporating photothermal/photoacoustic spectroscopic techniques with M/NEMS using quantum cascade lasers can provide the chemical selectivity without sacrificing the sensitivity of the miniaturized sensing system. Point sensing is defined as sensing that requires collection and delivery of the target molecules to the sensor for detection and analysis. For example, photothermal cantilever deflection spectroscopy, which combines the high thermomechanical sensitivity of a bimetallic microcantilever with high selectivity of the mid infrared (IR) spectroscopy, is capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules (tens of picogram). On the other hand, standoff sensing is defined as sensing where the sensor and the operator are at distance from the target samples. Therefore, the standoff sensing is a non-contact method of obtaining molecular signatures without sample collection and processing. The distance of detection depends on the power of IR source, the sensitivity of a detector, and the efficiency of the collecting optics. By employing broadly tunable, high power quantum cascade lasers and a boxcar averager, molecular recognition of trace explosive compounds (1 μg/cm2 of RDX) on a stainless steel surface has been achieved at a distance of five meters.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Seonghwan Kim, Dongkyu Lee, Xunchen Liu, C. W. Van Neste, and Thomas Thundat "Point and standoff detection of trace explosives using quantum cascade lasers", Proc. SPIE 9083, Micro- and Nanotechnology Sensors, Systems, and Applications VI, 90832N (4 June 2014); https://doi.org/10.1117/12.2053836
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Explosives

Sensors

Quantum cascade lasers

Molecules

Spectroscopy

Infrared spectroscopy

Sensing systems

Back to Top