Presentation
27 April 2016 Biomechanical cell analysis using quantitative phase imaging (Conference Presentation)
Author Affiliations +
Abstract
Quantitative phase imaging provides nanometer scale sensitivity and has been previously used to study spectral and temporal characteristics of individual cells in vitro, especially red blood cells. Here we extend this work to study the mechanical responses of individual cells due to the influence of external stimuli. Cell stiffness may be characterized by analyzing the inherent thermal fluctuations of cells but by applying external stimuli, additional information can be obtained. The time dependent response of cells due to external shear stress is examined with high speed quantitative phase imaging and found to exhibit characteristics that relate to their stiffness. However, analysis beyond the cellular scale also reveals internal organization of the cell and its modulation due to pathologic processes such as carcinogenesis. Further studies with microfluidic platforms point the way for using this approach in high throughput assays.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Adam Wax, Han Sang Park, and William J. Eldridge "Biomechanical cell analysis using quantitative phase imaging (Conference Presentation)", Proc. SPIE 9719, Biophysics, Biology, and Biophotonics: the Crossroads, 97190H (27 April 2016); https://doi.org/10.1117/12.2217440
Advertisement
Advertisement
KEYWORDS
Phase imaging

Biological research

Blood

In vitro testing

Microfluidics

Modulation

Biology

RELATED CONTENT


Back to Top